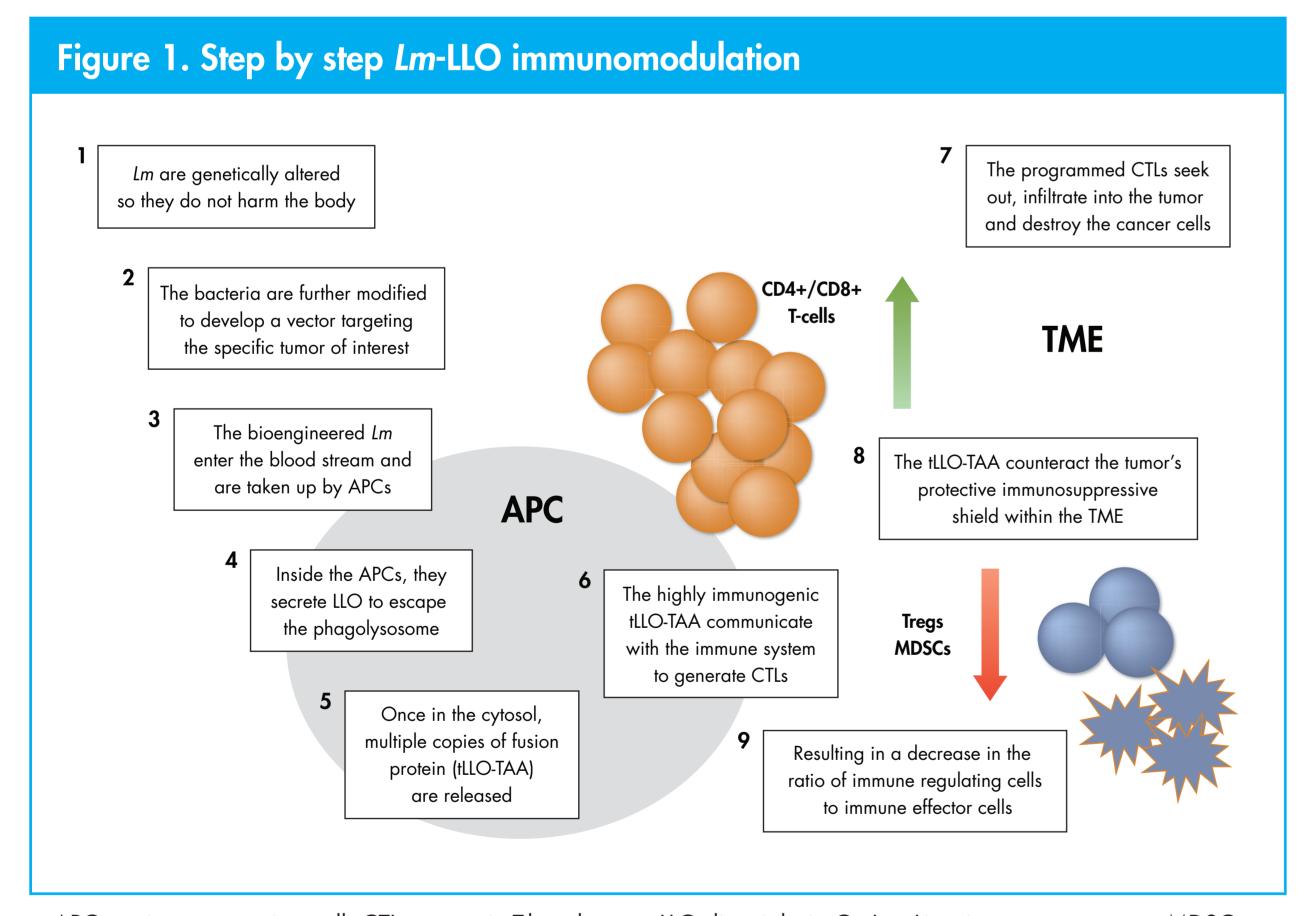
Icahn School of Medicine at Mount Sinai

Window of opportunity trial of HPV E7 antigen-expressing Listeria-based therapeutic vaccination prior to robotic surgery for HPV-positive oropharyngeal cancer

Brett Miles¹, Sacha Gnjatic², Michael Donovan³, Eric Genden¹, Krzys Misiukiewicz², Rosemarie Krupar⁴, Yvonne Saenger², Elizabeth G. Demicco³, Marshall Posner², Andrew G. Sikora⁴

¹Department of Otolaryngology, Mount Sinai School of Medicine, New York, NY, USA; ²Division of Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA; ⁴Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA


Introduction

- In the USA, the prevalence of human papillomavirus (HPV)-associated oropharyngeal cancer (HPVOPC) is increasing (225% from 1988 to 2004).^{1,2}
- Patients tend to be younger and have a favorable prognosis, with a 69% reduction in the risk of death compared with HPV-negative patients^{1,2}
- Most HPVOPC patients present with advanced stage, and standard chemoradiation regimens can be associated with significant toxicity.³
- It is a paradox of treatment that patients who have a good prognosis are at risk of therapy-related long-term poor quality-of-life outcomes

Immunotherapy has the potential to reduce toxicity through de-escalation of chemoradiation regimens, and potentially enhance long-term disease control.

- Listeria monocytogenes (Lm)-listeriolysin O (LLO) immunotherapies have been shown to generate antigen-specific T-cell responses and neutralize T-regulatory (Treg) and myeloid-derived suppressor cells (MDSCs) that protect the tumor microenvironment against immunologic attack (**Figure 1**).⁴
- ADX\$11-001 is an attenuated, genetically modified *Lm* vector that secretes an HPV-E7 tumor antigen as tLLO-E7 fusion protein; tLLO refers to the truncated form of non-hemolytic LLO protein.⁵
- ADXS11-001 can be combined with different treatment modalities, and data in cervical cancer support potential clinical benefit.^{6,7}

We hypothesize that ADXS11-001 neoadjuvant immunotherapy will induce a robust HPV-specific cytotoxic T-lymphocyte (CTL) response in the blood and tumor of HPVOPC patients who are vaccinated prior to surgery.

APC, antigen-presenting cell; CTL, cytotoxic T-lymphocyte; LLO, listeriolysin O; *Lm, Listeria monocytogenes*; MDSC, myeloid-derived suppressor cell; TAA, tumor-associated antigen; tLLO, truncated LLO; TME, tumor microenvironment; Treg, T-regulatory cell.

Objectives

To determine the immunogenicity of ADXS11-001 treatment in patients with stage II–IV HPV-positive squamous cell carcinoma of the oropharynx.

- Primary endpoint: change from baseline in HPV-specific CD8+ CTL responses in peripheral blood at the time of surgery.
- Secondary endpoint: change from baseline in HPV-specific CD8+ CTL responses in peripheral blood at various time points after surgery.
- Exploratory endpoint: changes in the profile of tumor-infiltrating effector (natural killer [NK] cells, CD4+ and CD8+ T-cells) and suppressor (Treg and MDSC) immunocytes.

To evaluate the tolerability, safety, and nature and degree of ADXS11-001 toxicity in patients with HPVOPC.

• Primary endpoint: adverse events assessed by the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0.

Methods

Window of opportunity, non-randomized, single-arm phase 2 trial of neoadjuvant ADXS11-001 treatment before standard of care transoral robotic surgery (TORS) in patients with stage II–IV HPVOPC (NCT02002182; Figure 2).

- Patients in the **ADXS11-001** treatment arm (study arm) will be enrolled according to a Simon's two-stage design.
- Initial cohort of 9 patients enrolled before preliminary analysis, and a subsequent cohort of 13 patients enrolled if statistical criteria are met
- **ADXS11-001** will be administered as an intravenous infusion at a dose of 1×10^{9} colony forming units at Days 1 and 15
- Ibuprofen, diphenhydramine, and an antiemetic will be given before ADXS11-001 infusion, with ibuprofen also administered after infusion; a course of amoxicillin (or alternative antibiotic) will be administered 72 hours after each ADXS11-001 dosing
- An observational arm of up to 10 patients, who will undergo TORS without previous treatment with **ADXS11-001**, will also be enrolled.
- Standard of care TORS will be performed in all patients.
- Adjuvant radiation/chemoradiation will be as per standard of care (4–6 weeks after TORS).
- Blood, tumor specimens, and tumor-infiltrating lymphocytes will be collected at different time points from study patients (**Figure 2**), and processed and stored prior to analysis.

Figure 2. Study design and schedule Biopsy 2 ADXS11-001 Study arm N = 22neoadjuvant $(3 \text{ mo} \pm 2 \text{ wks})$ (pre-TORS) (6 mo ± 2 wks $(12 \text{ mo} \pm 4 \text{ wks})$ $(3 \pm 1) \text{ wk} \quad (6 \pm 1) \text{ wk}$ post-TORS) **Observational** N = 10no ADXS11-001 **PBMCs** treatment (6 mo ± 2 wks (12 mo ± 4 wks post-TORS) post-TORS)

mo, months; PBMCs, peripheral blood mononuclear cells; TORS, transoral robotic surgery; wk, week.

Key inclusion criteria

- Adult patients (≥ 18 years) with newly diagnosed, biopsy proven, stage II–IV HPVOPC.
- Eligible to undergo TORS with or without neck dissection.
- Eastern Cooperative Oncology Group performance status ≤ 2.
- Able to understand and give informed consent.

Key exclusion criteria

- Active cancer at another site, or history of cancer within the past 3 years.
- Prior systemic chemotherapy or radiotherapy.
- Immunosuppressive condition, or taking immunosuppressive medication.
- Liver disease or other medical contraindication to study medications.

Blood and tumor assessments

- Blood and tumor analyses include immunophenotyping and characterization of HPV-specific T-cell responses in blood, seroreactivity to HPV and cancer-testis antigens in blood, and immunophenotyping and molecular profiling of tumor tissue (summarized in **Table 1**).
- Tissue-based changes will be correlated with comprehensive analysis of immune changes in peripheral blood.

Table 1. Laboratory studies Questions to be answered Assay **ELISPOT** for HPV-E7-reactive T-cells in Does ADX\$11-001 induce robust systemic peripheral blood antigen-specific immunity? Do ADXS11-001-induced T-cells penetrate **IHC/IF** for tumor-infiltrating CD8+ T-cells and other immunocytes the tumor? Is the overall balance of suppressor and effector immune cells in the TME improved after treatment? Immunophenotyping of suppressor and Does ADXS11-001 improve the systemic effector immune cell subsets in blood by balance of suppressor and effector flow cytometry immunocytes? **Seroreactivity** to HPV antigens and Does targeting a foreign viral antigen (E7) HNSCCA-associated cancer-testis antigens lead to epitope spreading and induction in blood of a broad-based response to self-derived tumor antigens? Immune gene expression signatures in Is ADXS11-001 associated with an TME by **Nanostring** "immune response signature" of altered gene expression? Can we identify potential molecular targets for combination therapy? Does ADXS11-001 induce a durable Multiplex serum cytokine and soluble immunomodulator levels by **Luminex** inflammatory/cytokine signature? analysis How does ADXS11-001 treatment affect T-cell receptor diversity profiling by the depth and breadth of the tumor-Immunoseq TCR deep sequencing infiltrating T-cell repertoire?

ELISPOT, Enzyme-Linked ImmunoSpot; HNSCCA, human head and neck squamous cell carcinoma antigen; HPV, human papillomavirus; IF, immunofluorescence; IHC, immunohistochemistry; TCR, T-cell receptor; TME, tumor microenvironment.

Statistical considerations

• The trial is designed to conclude that **ADXS11-001** treatment is highly immunogenic and worth further investigation if post-treatment T-cell responses in peripheral blood at least two-fold greater than pretreatment baseline response are observed in > 75% of patients.

Trial status

- This phase 2 study is open and actively enrolling at Icahn School of Medicine at Mount Sinai, NY, USA (Site PI Brett Miles). The IND for this study is held by the Baylor College of Medicine (FDA IND#15688, PI Andrew Sikora).
- Eight of a maximum of 22 **ADXS11-001**-treated patients and 2 of a maximum of 10 observational patients have been enrolled to date.

References

1. Chaturvedi AK, et al. J Clin Oncol. 2011;29:4294–301 2. Fakhry C, et al. J Clin Oncol. 2006;24:2606–11. 3. Argiris A, et al. Lancet. 2008;371:1695–709. 4. Mkrtichyan M, et al. J Immunother Cancer. 2013;1:15. 5. Gunn GR, et al. J Immunol. 2001;167:6471–9. 6. Perez K, et al. Sexual Health. 2015;12:87. Abstr. 23. 7. Basu P, et al. J Clin Oncol. 2014;32(suppl):abstr. 5610.

Copies of this poster obtained through Quick Response (QR)
Code are for personal use only and may not be reproduced without permission from ASCO® and the author of this poster.

Acknowledgments

The authors would like to acknowledge the patients participating in this study, as well as support staff including Pang Herrera and Rita Babu. Advaxis provides ADXS11-001 and unrestricted research funds to support this trial. Editorial and medical writing assistance was provided by Sandra Mendes, PhD, CMPP, TRM Oncology, The Netherlands, funded by Advaxis. The authors are fully responsible for all content and editorial decisions for this poster.

Disclosures

Brett Miles: Site PI Advaxis Trial, no salary support. Sacha Gnjatic, Michael Donovan, Eric Genden, Krzys Misiukiewicz, Rosemarie Krupar, Yvonne Saenger, Elizabeth G. Demicco, and Marshall Posner have no potential conflicts of interest to disclose. Andrew G. Sikora receives unrestricted research funding from Advaxis to support this clinical trial.