

November 2015 Company Presentation

Forward Looking Statements

This presentation contains forward-looking statements, including, but not limited to: statements regarding Advaxis's ability to develop the next generation of cancer immunotherapies; and the safety and efficacy of Advaxis's proprietary immunotherapy, axalimogene filolisbac. These forward-looking statements are subject to a number of risks, including the risk factors set forth from time to time in Advaxis's SEC filings, including but not limited to its report on Form 10-K for the fiscal year ended October 31, 2014, which is available at http://www.sec.gov.

Advaxis undertakes no obligation to publicly release the result of any revision to these forward-looking statements, which may be made to reflect the events or circumstances after the date hereof or to reflect the occurrence of unanticipated events, except as required by law. You are cautioned not to place undue reliance on any forward-looking statements.

Our Company

ADVAXIS OVERVIEW

Advaxis Company Overview

Background

- Core technology live attenuated Listeria monocytogenes (Lm) bacterial vector stimulates the immune system to view tumor cells as bacterial infected cells and target them for elimination
- Alters tumor microenvironment by increasing tumor fighting cells and decreasing tumor protecting cells
- ~50 employees with lab, office, and vivarium located in Princeton, NJ

Financial Snapshot

- Raised ~\$165M since October 2013
- Cash: ~\$120M as of August 2015

Summary of Strengths

- Extremely versatile platform technology can be used to treat any type of cancer through targeting driver mutations and/or neoepitopes
- Existing collaborations with Merck & Co., Inc.; AstraZeneca/MedImmune, LLC; and Incyte Corp.
- Straightforward and scalable manufacturing process
- Highly proprietary technology (80+ patents) with low royalty obligation (2.5%)

Key Value Drivers

Lm Technology™ Candidates in Development

- Axalimogene filolisbac Comprehensive clinical development program in early and late stage HPVassociated cancers
- ADXS-HER2 Clinical development program in multiple HER2 expressing solid tumors
 - > AT-014 for canine osteosarcoma anticipated launch in 2016 (licensed to Aratana/NASDAQ:PETX)
- ADXS-PSA Clinical development program in metastatic castration-resistant prostate cancer (mCRPC) as monotherapy and in combination with KEYTRUDA®
- Orphan Drug Designations for invasive cervical cancer, head and neck cancer, anal cancer, and osteosarcoma

Preclinical Pipeline

- ADXS-NEO Neoepitope-based immunotherapy targeting mutations identified in an individual patient's tumor using massive parallel sequencing; IND anticipated mid-2016
- ADXS-TNBC Triple negative breast cancer; IND anticipated mid-2016
- Other Lm Technology minimum immunotherapy product candidates targeting tumor driver mutations, including survivin, ISG15, PSCA, WT1, and others

Combination with Other Cancer Therapies

- Synergistic response with checkpoint inhibitors (PD-1 and PD-L1) and costimulatory molecules (OX40 and GITR) in preclinical models
- Enhanced response in combination with radiation in prostate cancer models

Experienced Management Team

David Mauro, MD, Ph.D.

Chief Medical Officer

Robert Petit. Ph.D.

Chief Scientific Officer

Chief Financial Officer

AstraZeneca

KEYTRUDA

(pembrolizumab) for Injection 50 mg

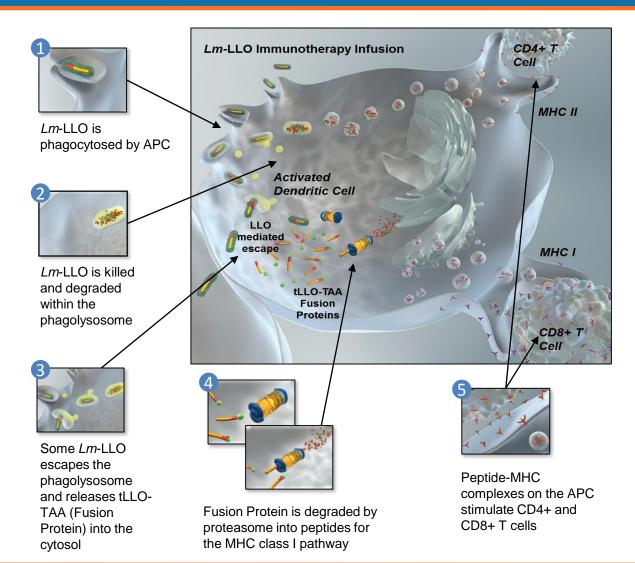
Chris French, MBA VP, Compliance

Robert Ashworth VP, Regulatory

Tom Hare VP, Clinical Operations

Mayo Pujols VP, Manufacturing

Strong Collaborations with Academic Institutions and Foundations



Our Immunotherapy

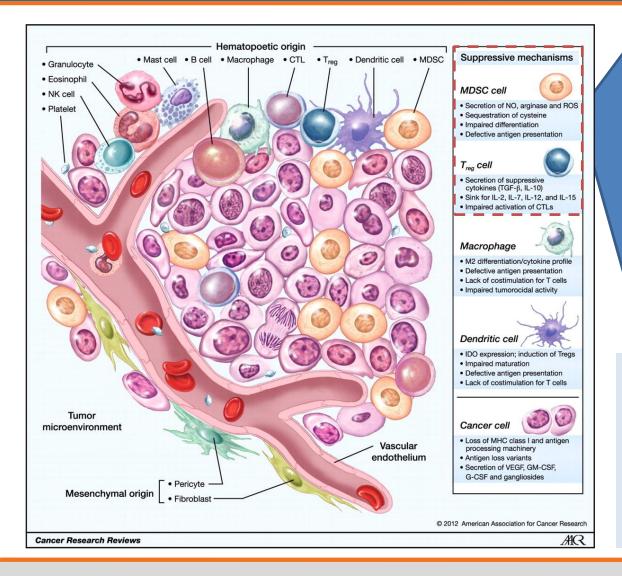
LM TECHNOLOGYTM

Lm Technology™ Overview: Harnessing Unique Life Cycle of *Lm* in APCs

Summary

- Lm-LLO and Tumor Associated Antigen (TAA) presented and taken up by dendritic cells (antigen presenting cells or APCs)
- Dendritic cells activated and generate an immune response through both the MHC I and MHC II pathways
- Robust T-cell response generated towards antigen secreted by Lm-LLO and redirected to tumors expressing the same TAA
- "Perceived" acute infection stimulates a strong innate immune response through multiple pathways (e.g. STING)
- Over-rides checkpoint inhibitors and negative regulators of cellular immunity

MHC, major histocompatibility complex


Our Immunotherapy

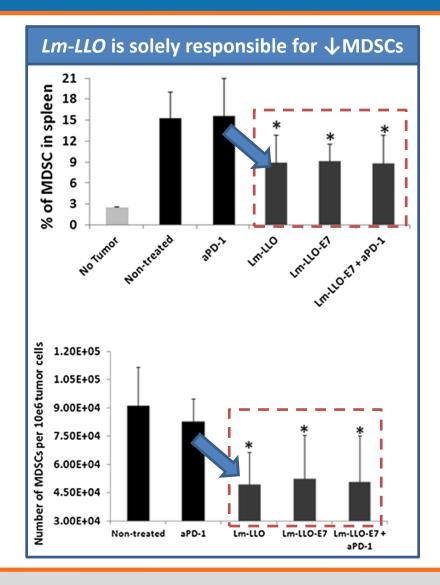
IMPACT ON THE TUMOR MICROENVIRONMENT

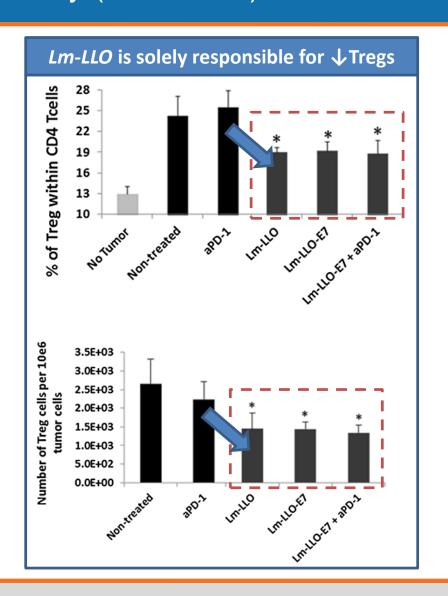
Lm Technology™ & Tumor Microenvironment: Suppressing Treg and MDSC Activity

IMMUNOTHERAPIES

MDSC cell

- Secretion of NO, arginase and ROS
- Sequestration of cysteine
- Impaired differentiation
- Defective antigen presentation


T_{reg} cell



- Secretion of suppressive cytokines (TGF-β, IL-10)
- Sink for IL-2, IL-7, IL-12, and IL-15
- · Impaired activation of CTLs
- Tregs and MDSCs are the key cells that tumors manipulate to avoid detection by the immune system and evade destruction
- Lm-LLO, Advaxis's proprietary technology, decreases the relative % of Tregs and MDSCs in the TME

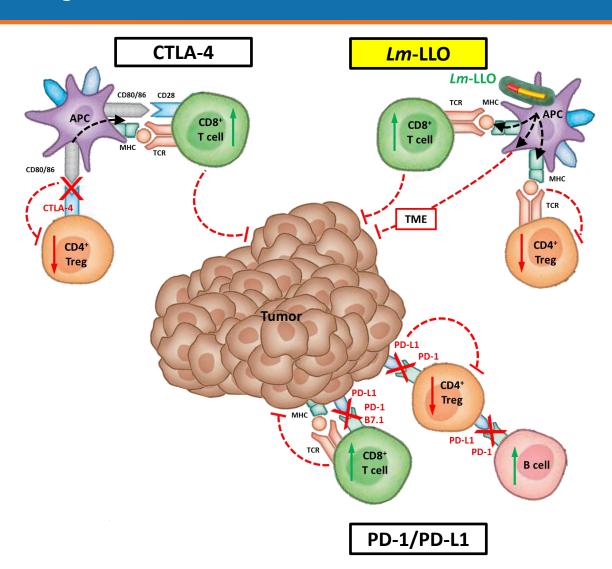
Lm Technology™ & Tumor Microenvironment: Suppressing Treg and MDSC Activity (Preclinical)

Our Immunotherapy

SYNERGY WITH CHECKPOINT INHIBITORS & COSTIMULATORY MOLECULES

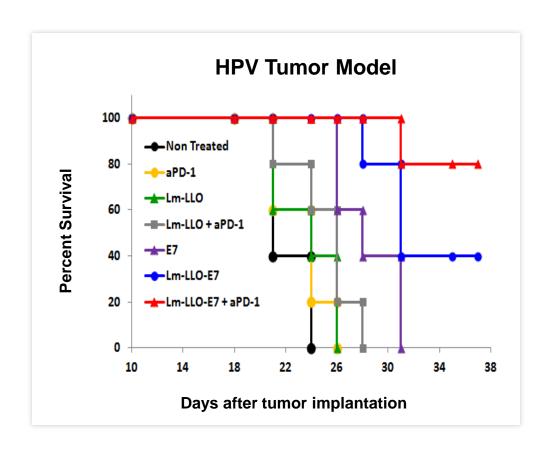
Lm Technology™ & Checkpoint Inhibitors: Synergistic Tumor Killing in the Microenvironment

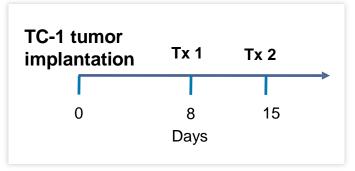
CTLA-41 block results in:


- Down-regulation of CD4⁺ Tregs
- Upregulation of CD8+ tumor infiltrating effector T cells

PD-1¹ block results in:

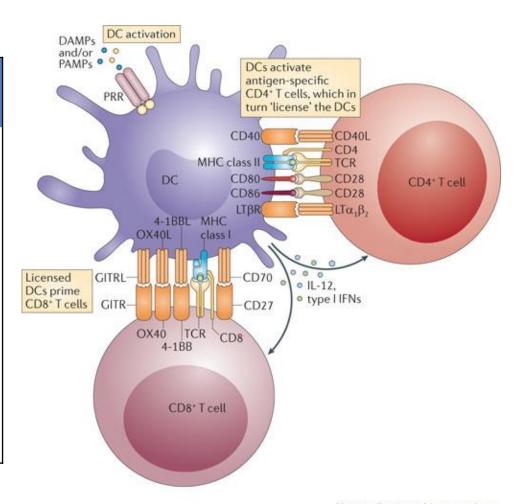
- Recognition of tumor cells by T cells
- Proliferation and function of CD8⁺ tumor infiltrating effector T cells


PD-L1¹ block results in:


- Recognition of tumor cells by T cells
- Proliferation and function CD8⁺ tumor infiltrating effector T cells
- No CD4⁺ Treg activation
- Increase in B cell antibody production

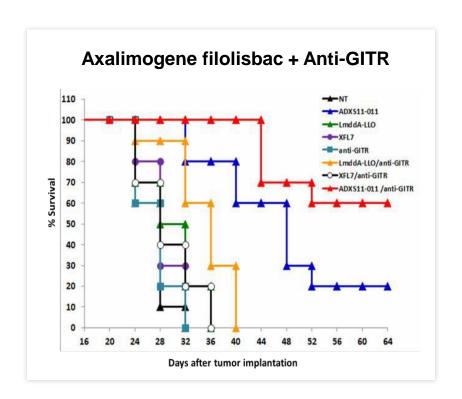
Lm Technology™ & Checkpoint Inhibitors: Axalimogene Filolisbac & PD-1 Preclinical Data

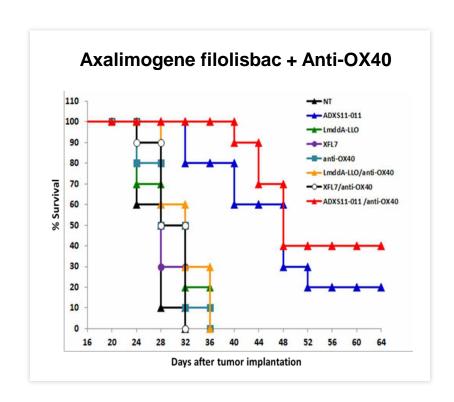
Treatments:	
Lm-LLO-E7:	5x10 ⁶ cfu
CT-011 mAb:	50 µg


Low dose *Lm*-LLO immunotherapy can be combined with a checkpoint inhibitor

Lm Technology™ & Costimulatory Molecules: Improved Targeting and Priming of CTLs

Role of Costimulatory Molecules in the Adaptive Immune Response


- DCs are activated by pathogenassociated molecular patterns (PAMPs)
- CD40 signaling results in the production of IL-12 and upregulation of OX40 ligand (OX40L) and GITR ligand (GITRL)
- Priming of CD8+ T cells by MHC class I peptides upregulates OX40 and GITR
- Stimulation of OX40 and GITR generates robust CD8+ T cell activation, proliferation, and effector function



Nature Reviews | Immunology

Lm Technology™ & Co-Stimulatory Molecules: A D V A X I S Axalimogene Filolisbac & GITR or OX40 Antibodies IMMUNOTHERAPIES™

HPV Tumor Model

Lm-LLO immunotherapy can be combined with agonistic antibodies to immune co-stimulatory molecules

Our Clinical Trials

TIMELINES, DESIGN, AND RESULTS

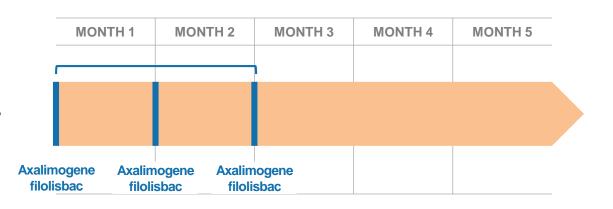
Clinical Development Three Active Programs with 4 Orphan Indications

Product	Indi	Indication		Phase 2	Phase 3	Partner
Cervical Cancer*						
		AIM2CERV – Adjuvant Randomized vs. Placebo			Phase 3	CCC commencement amount com
	М	Metastatic – Randomized vs Cisplatin/Axalimogene Filolisbac	Phase 1	Phase 2		
	IVI	Metastatic – GOG-0265		Phase 2		COC Surrous armost care
		Metastatic – Single Arm High Dose	Phase 1/2			
	С	Metastatic – Combo with durvalumab (MEDI4736)	Phas	e 1/2		I MedImmune
Axalimogene	C	Stage I-IIa – Combo with epacadostat (INCB24360)		Phase 2		Incyte
(ADXS-HPV)	Filolisbac Head and Neck Cancer*					
(ADAS-III V)	М	Neoadjuvant – Window of Opportunity		Phase 2		Mount Sinai
	С	Metastatic – Combo with durvalumab (MEDI4736)	Phas	e 1/2		I MedImmune
	Anal Cancer*					
		Adjuvant Randomized vs Control		Phas	e 2/3	RTOG° RADIATION THERAPY ONCOLOGY GROUP
	М	Adjuvant – Single Arm High Risk	Phas	e 1/2		BROWN
		Metastatic – Single Arm (FAWCETT)		Phase 2		
Prostate Cancer*						
ADXS-PSA	С	Metastatic – Combo with KEYTRUDA® (pembrolizumab) Phase 1/2		MERCK		
	HER2-positive Solid Tumors (including Osteosarcoma*)					
ADXS-HER2	ADXS-HER2 M Metastatic – Single Arm Phas		Phase 1			
	М	Pediatric Osteosarcoma		Phase 2		CHILDREN'S ONCOLOGY GROUP
M Monotherapy	py C Combination In Progress (FDA accepted IND and/or ongoing trial Planned		nned			

Our Clinical Trials

AXALIMOGENE FILOLISBAC: COMPANY SPONSORED PHASE 2 STUDY

Axalimogene Filolisbac Phase 2 Study Study Schema—Recurrent Cervical Cancer

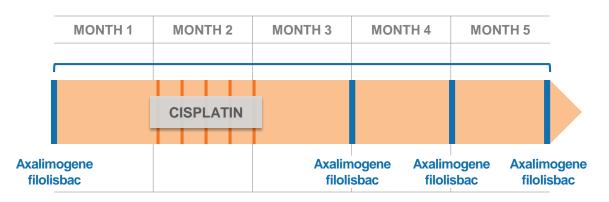

Primary Efficacy Endpoint: Overall Survival

ARM A

Axalimogene Filolisbac Monotherapy

1x10⁹ cfu x 3 doses q 28 days (days 0, 28, 56) as an 80 ml infusion over 15 min

N = 56


ARM B

Axalimogene Filolisbac + Cisplatin

1x10⁹ cfu x 4 doses q 28 days (days 0, 88, 106, 134) as an 80 ml infusion over 15 min

Cisplatin 40 mg/m² weekly x 5 (days 30, 37, 44, 51, 58)

N = 54

Naproxen 500 mg BID (day -1, 0) and promethazine 25 mg BID (pre-dose 8 hours) administered as premedications Ampicillin 500 mg QID (days 3-9) administered post-infusion

Axalimogene Filolisbac Phase 2 Study Safety in Recurrent Cervical Cancer

109 patients received 264 doses of axalimogene filolisbac at 1x109 cfu	(N=109)
Grade 1-2 AEs (76 patients reported)	41 (38%)
Chills/Shivering	41 (38%)
Flu-Like Symptom	13 (12%)
Vomiting	6 (6%)
Nausea	5 (5%)
Fever	5 (5%)
Dizziness	2 (2%)
Cytokine Release Syndrome	1 (1%)
Headache	1 (1%)
Weight Decreased	1 (1%)
Blood Alkaline Phosphatase Increased	1 (1%)
Grade 3 AE (1 patient reported)	
Fever	1 (1%)

Axalimogene Filolisbac Phase 2 Study Efficacy in Recurrent Cervical Cancer

Survival Analyses at 12, 18 and >24 Months

Patients	Overall (N=109)	Axalimogene Filolisbac Alone (N=55)	Axalimogene Filolisbac + CISPLATIN (N=54)
12-Month Survival	32%	29%	35%
	(35 / 109)	(16 / 55)	(19 / 54)
18-Month Survival	22%	22%	22%
	(24 / 109)	(12 / 55)	(12 / 54)
≥ 24-Month Survival	18%	15%	20%
	(16 / 91*)	(7 / 46)	(9 / 45)

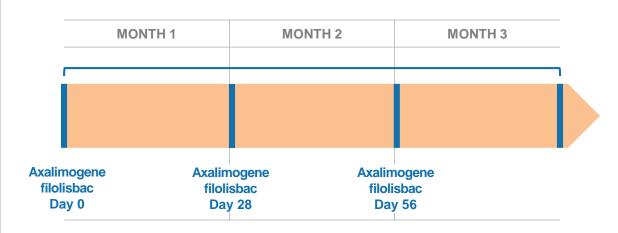
- There was no statistically significant difference in median overall survival between axalimogene filolisbac alone or in combination with cisplatin
- Tumor response was comparable between treatment groups at 12, 18, and 24 months
- The objective response rate in both arms was 10% and the disease control rate was 38%

^{* &}gt;24 month survival rate is based on 16 known to be alive out of 91 patients from the OS efficacy population with at least 24 months of documented follow-up data

Our Clinical Trials

AXALIMOGENE FILOLISBAC: GOG-0265 STUDY

Axalimogene Filolisbac: GOG-0265 Study Study Schema—Phase II Open Label, 2-Stage

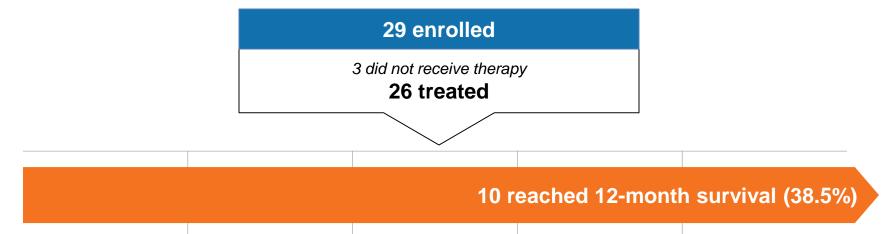

Primary Efficacy Endpoint: 12-month survival

Axalimogene Filolisbac Monotherapy in Recurrent Cervical Cancer

1x10⁹ cfu x 3 doses q 28 days (month 1, 2, 3) as an 80 ml infusion over 15 min

N = ~67 (Stage 1 and 2)

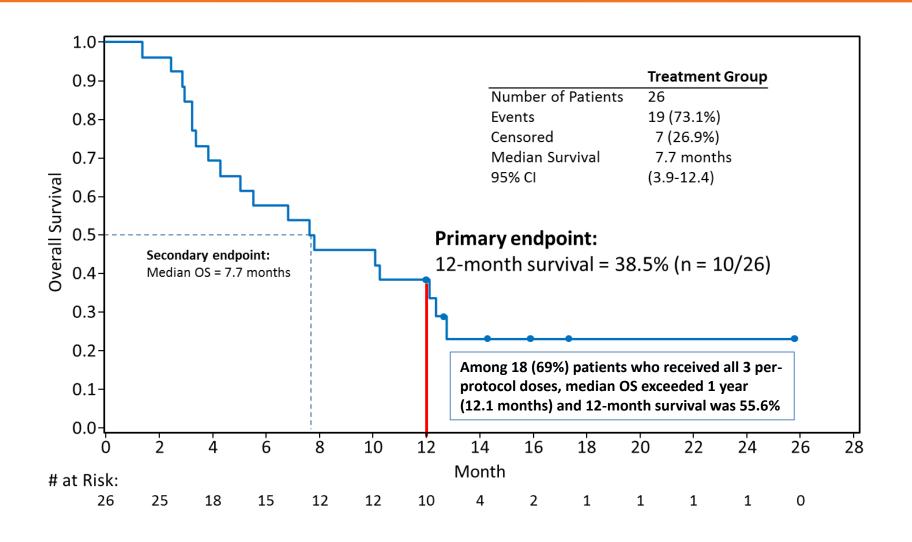
- Persistent or recurrent metastatic cervical cancer (PRmCC)
- ≥ 1 prior chemotherapy regimen for PRmCC, excluding that received as a component of primary treatment
- GOG PS 0/1
- Measurable disease ≥ 1 target lesion (RECIST 1.1)



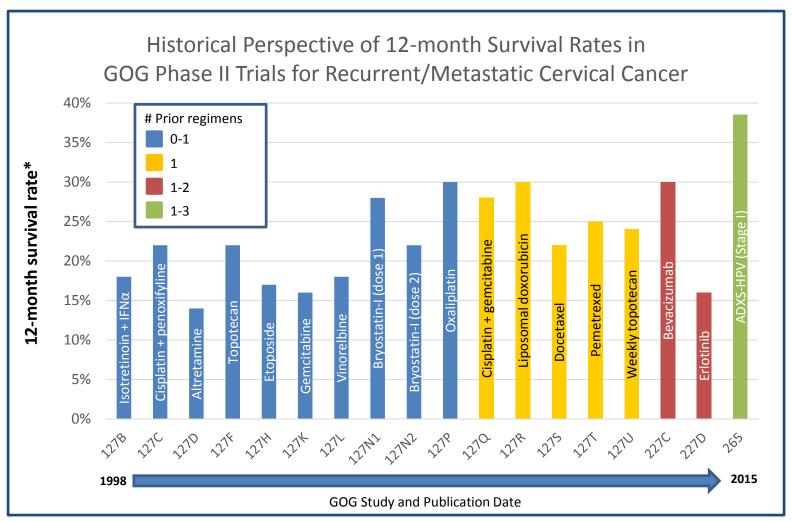
(Tewari KS, Monk BJ. Curr Oncol Rep 2005; 7(6):419-34.)

GOG, Gynecologic Oncology Group

Axalimogene Filolisbac: GOG-0265 Study Stage 1 Final Data (September 2015)


Met statistically pre-defined 24.5%12-month survival efficacy threshold* and has proceeded to Stage 2 additional enrollment of n=37

Adverse Event Summary (N = 26 patients)				
Pts with ≥ 1 Adverse Event (AE)	26 (100%)			
Pts with <u>></u> 1 treatment-related AE	24 (92%)			
Grade 1 - 2 only	19 (73%)			
Grade 3	4 (15%)			
Grade 4	1 (4%)			


^{*} Threshold derived from pooled review of 12-month survival rates in completed GOG phase II trials in similar patient population

Axalimogene Filolisbac: GOG-0265 Study Stage 1 Final Data—Overall Survival

Axalimogene Filolisbac: GOG-0265 Study In the Context of Historical 12-Month Survival Rates

^{*}derived from product limit estimate of probability of surviving >12 months

Clinical Significance of GOG-0265 Stage 1

Historical Perspective

- Between 1998 and 2015, the GOG conducted serial single arm two-stage trials of various monotherapy and combination regimens in recurrent persistent metastatic cervical cancer
- Trial inclusion criteria has evolved from initially restricting to 0 or 1 prior regimens in the metastatic setting, to most recent inclusion of up to 3 or more prior therapies
- Prior to 2015, the 12-month survival rate in a GOG study has never exceeded 30%
 - When isolating only studies including ≥ 1 prior regimen, this value is ~15-20%, and informed the GOG 0265 Stage I \rightarrow Stage 2 minimum threshold

Current Standard of Care

- First-line treatment of recurrent persistent metastatic cervical cancer is cisplatinbased chemotherapy, plus bevacizumab in those patients appropriate for antiangiogenic therapy
 - > Trials studying second-line and later therapy now need to address management of the chemotherapy/bevacizumab pretreated population

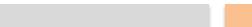
GOG-0265

- GOG 0265 study includes a more refractory patient population (1 3 prior regimens) than previous trials and includes post-progression chemotherapy / bevacizumab patients
- As of June 2015, 10 (38.5%) patients treated with ADXS-HPV have reached 12months survival, exceeding historical survival rates in a refractory and heterogeneous patient population

Axalimogene Filolisbac: GOG-0265 Study Next Steps

- GOG-0265 opened to stage 2 enrollment of an additional 37 patients
 - Stage I efficacy threshold met (24.5% 12-month survival)
 - Accrual update: 44/67 (including stage 1)
- Safety and early efficacy findings support protocol amendment to allow continuous cycles of ADXS11-001 treatment until disease progression
- An international Advaxis-sponsored Phase 3 study of ADXS11-001 as adjuvant treatment of high-risk locally advanced cervical cancer (AIM2CERV) is under development in collaboration with the GOG Foundation

Axalimogene Filolisbac: Planned Phase 3 Study Schema—ADXS AIM2CERV Study


Randomization 1:2 between Reference and Treatment Groups

Primary objective is progression free survival

- High risk
- FIGO stage I-II with positive pelvic nodes
- FIGO stage III-IV
- Any FIGO stage with para-aortic nodes

Cisplatin (at least 4 weeks exposure) and Radiation (minimum 40 Gy external beam radiation therapy)

RANDOMIZE

Placebo IV Up to 1 year

Reference Group

Treatment Group

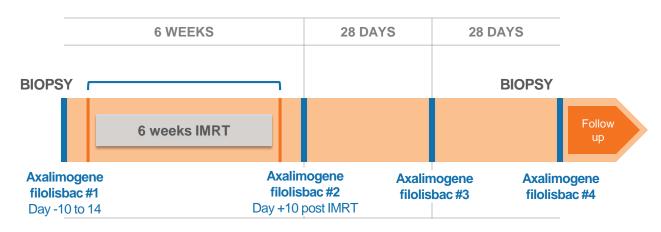
ADXS11-001 (1 x 10⁹ cfu) Up to 1 year

Follow-up for overall survival

Our Clinical Trials

AXALIMOGENE FILOLISBAC: ANAL CANCER

Axalimogene Filolisbac: Phase 1/2 Anal Cancer A D V A X Study Schema—Open Label Combo at BrUOG



Primary Efficacy Endpoint: 6-month CR-rate

Axalimogene Filolisbac

1x109 cfu x 4 (1 prior to chemoRT and 3 post, q 28 days) as a 500 ml infusion over 30 min

- N = 25
- Primary stage II-III anal cancer
- High risk of recurrence
- **HPV-positive**

IMRT = 5-FU, Mitocyin, and Radiation

BrUOG, Brown University Oncology Group

Perez K et al. IANS 2015: Abstract 23

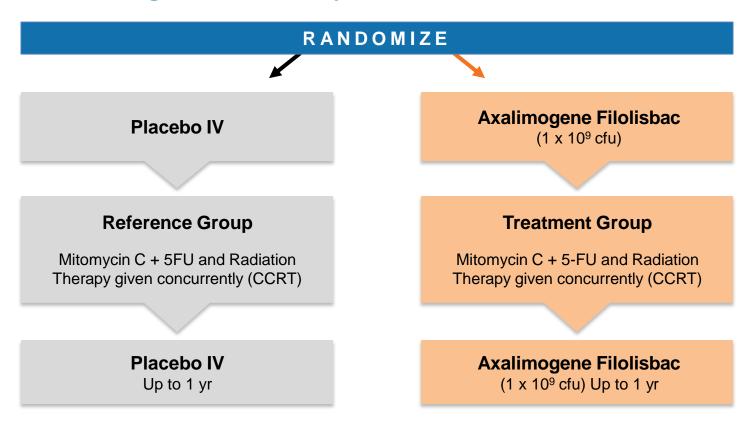
Axalimogene Filolisbac: Phase 1/2 Anal Cancer A D V **Preliminary Data**

Study open: April 2013

N = 10 / 25 patients enrolled

Efficacy Summary as of March 2015:

- 10 patients received study treatment
- All patients who have completed treatment achieved CR
- No patient has developed recurrence
 - Historical 3-year recurrence rate in similar patient population = ~45%
- Follow-up range: 0.5 months 24 months


Safety Summary as of March 2015:

Chills, occasional rigors, flu-like symptoms \rightarrow resolved prior to leaving clinic (~2 hours)

Axalimogene Filolisbac: Planned Phase 2/3 NRG/RTOG Study for Locally Advanced Cancer

High Risk, Locally Advanced Anal Cancer

Study design is currently being proposed to NCI CTEP

Our Clinical Trials

ADXS-HER2

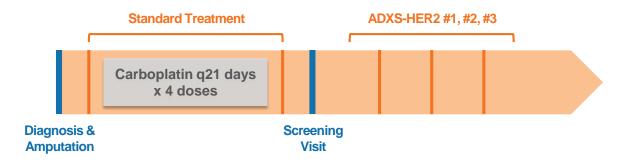
ADXS-HER2

Phase 1 Study in Canine Osteosarcoma (UPENN)

Study Goals:

- Identify MTD
- Safety
- Tumor-specific immunity
- Prevention of metastases
- Prolongation of survival

ADXS-HER2


4 dose levels tested:

2x10⁸ cfu 5x10⁸ cfu

1x10⁹ cfu

3x109 cfu

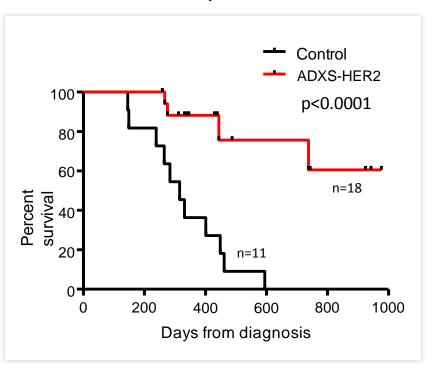
- N = 18 dogs
- Canine osteosarcoma (OSA)
- Post amputation and chemotherapy

UPENN, University of Pennsylvania

* Paolini M., BMC Genomics, 2009

ADXS-HER2

Phase 1 Study in Canine Osteosarcoma: Safety & Efficacy


Pet Dogs with Treatment Related Adverse Events

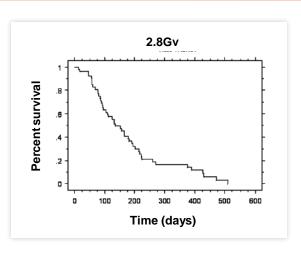
(All toxicities reported are Grade 1)

ADXS-HER2 Dose	2x10 ⁸	5x10 ⁸	1x10 ⁹	3x10 ⁹	Total
Number of dogs recruited	N=3	N=3	N=9	N=3	N=18
General Disorders					
Pyrexia (>103)	2	1	5	2	10
Fatigue	1	1	7	2	11
GI Disorders					
Vomiting	2	1	8	1	12
Nausea	2	1	9	2	14
Cardiovascular					
Arrhythmias	0	1	1	1	3
Tachycardia	0	0	1	1	2
Hypotension	0	0	0	0	0
Hematological parameters					
Thrombocytopenia	0	0	5	0	5
Biochemical parameters (increase)					
γ-GT	0	2	0	0	2
Alkaline Phosphatase	1	1	4	1	7
ALT	1	1	1	0	3
AST	1	1	5	1	8
BUN	0	0	0	0	0
CREA	0	0	0	0	0
Cardiac Troponin I	0	0	1	0	1

ADXS-HER2 and Overall Survival

Median survival: Case-matched control: 316 days ADXS: not yet reached

2 dogs censored from ADXS arm, deaths unrelated to OSA


Next Steps: Pending approval USDA for veterinary use; Currently under investigation in combination with RT in OSA

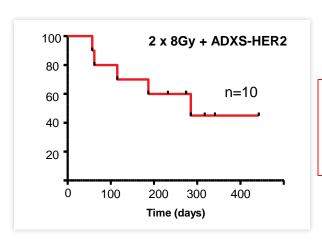
ADXS-HER2

A D V A X I S

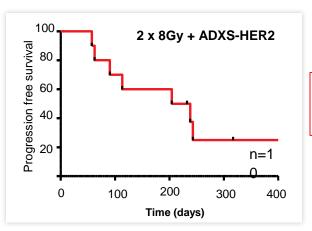
Combo with Radiation in Untreated Canine Osteosarcoma

Radiation alone

Historical Perspective:


Knapp-Hoch et al. J Am Anim Hosp Assoc. 2009 Jan-Feb;45(1):24-32.

Median OS = ~120 days


(expected OS range for dogs that cannot undergo amputation and receive only palliative radiation and analgesics is 3 - 5 months)

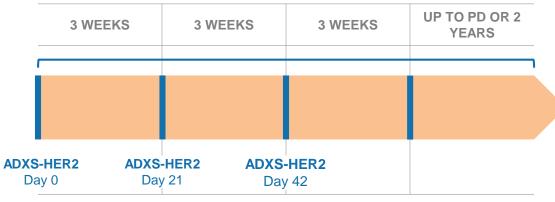
ADXS-HER2 and Radiation: **N** = 10 pet dogs with untreated primary OSA

Radiation plus ADXS-HER2

Median OS = 285 days

Median TTP = 221 days

ADXS-HER2 Human Study Phase Ib Dose-Escalation in HER2+ Solid Tumors



Primary Endpoint: Safety and RP2 Dose

ADXS-HER2 Monotherapy

Dose level 1: 1x10⁹ cfu q 3 wks Dose level 2: 5x10⁹ cfu q 3 wks Dose level 3: 1x10¹⁰ cfu q 3 wks

- N < 18 (Dose finding); N
 < 80 (Expansion phase)
 [Total N ~100]
- HER2-positive solid tumor (>1+ positivity in 1% of cells by IHC)
- Disease progressed or intolerant to standard therapy
- ECOG PS 0-1
- 3+3 Phase I Design

If no DLT, next dose level initiates

Next Steps

- Determine recommended Phase 2 dose
- Evaluate signals and set clinical development plan

PD, disease progression; RP2, Recommended phase 2

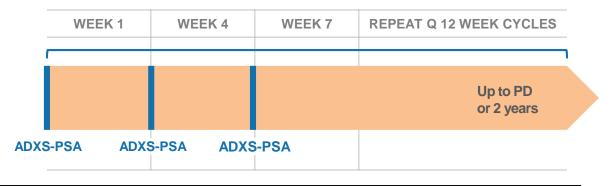
Our Clinical Trials

ADXS-PSA

ADXS-PSA: Phase 1/2 Study Monotherapy vs. Combo with Pembrolizumab

- N = 21 (Part A); N = 30 (Part B) [Total N = 51]
- Pretreated metastatic castration-resistant prostate cancer (CRPC)
- No more than 3 prior lines of systemic therapy (<1 chemotherapy)

- mTPI Design (Part A)

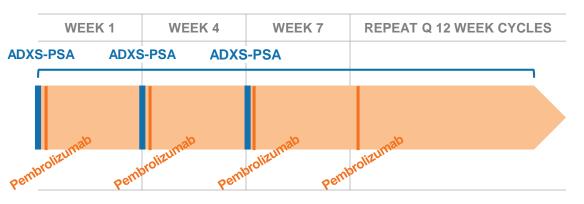

 RP2 Dose
- Part B ADXS-PSA Dose = Part A RP2 DL-1
 + pembrolizumab

PART A

ADXS-PSA Monotherapy

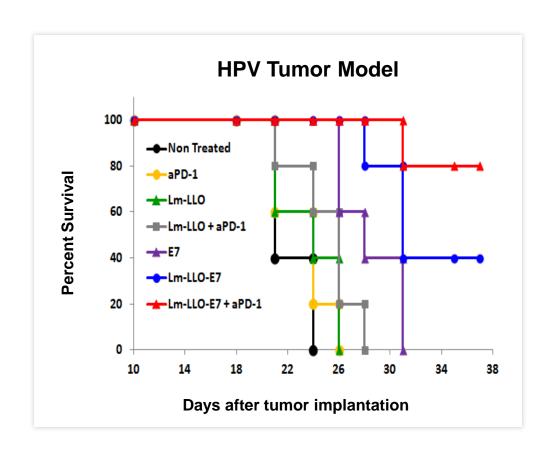
Dose level 1: 1x10⁹ cfu d1 wk 1,4,7 q12 wks Dose level 2: 5x10⁹ cfu d1 wk 1,4,7 q12 wks Dose level 3: 1x10¹⁰ cfu d1 wk 1,4,7 q12 wks

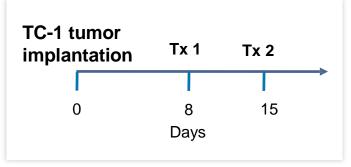
N = 21



PART B

ADXS-PSA + Pembrolizumab


ADXS-PSA Part A Dose –DL1 d1 wk 1,4,7 q12 wks Pembrolizumab 200 mg d1 q 3wks in 12 wk cycles


N = 30

ADXS-PSA: Phase 1/2 Study Preclinical Data—Combination with PD-1

Treatments:	
Lm-LLO-E7:	5x10 ⁶ cfu
CT-011 mAb:	50 µg

Data published in *Journal for ImmunoTherapy of Cancer* 2013, 1:15 doi:10.1186/2051-1426-1-15

Low dose *Lm*-LLO immunotherapy can be combined with a checkpoint inhibitor

Our Preclinical Projects

ADXS-NEO

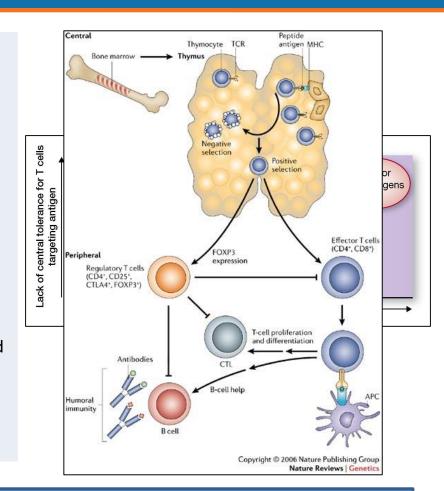
PERSONALIZED NEOEPITOPE-BASED IMMUNOTHERAPY

The Case for Neoepitopes

Why does cancer develop "neoepitopes"?

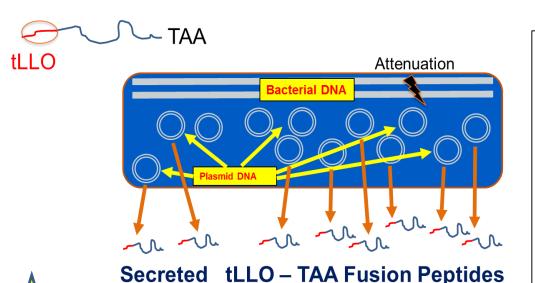
- Tumors develop because of mutations in genes coding for key regulatory and functional proteins
- Expression of mutated proteins causes aberrant cellular functions that result in malignancy
- Malignant cells that can avoid normal mechanisms of immune surveillance are allowed to survive
- Normal peptides are weakly immunogenic central tolerance deletes high avidity clones
- Mutated proteins in the cancer differ from those in normal cells, they can be targets for immunologic treatment
- High avidity T cell clones can be developed that recognize the mutated peptides – Not deleted by the thymus

The Case for Neoepitopes


Why is this a good method to treat cancer?

- Immunotherapies work by "activating" the patient's immune system to target epitopes in cancer cells
 - > High avidity cytotoxic T cells can be generated against neoepitopes
 - ➤ T cells targeting epitopes caused by mutations can be expanded therapeutically
 - ➤ Checkpoint inhibition appears to work by enabling pre-existing T cells responses against neoantigens to expand and become tumoricidal
 - > Immunizing patients against their own neo-antigens with an attenuated live vector will generate or enhance T cell responses against neoepitopes
- Because the T cell responses are only against the mutated neoepitopes, and there is no systemic blockade of tolerance, there should be no off-target toxicity

Neoepitopes in Cancer Treatment


- Effective Immunotherapies work by "enabling" the patient's immune system to amplify T cells that target neoepitopes in cancer cells
 - High avidity cytotoxic T cells can be generated against neoepitopes
 - ➤ T cells targeting epitopes caused by mutations can be expanded therapeutically
 - T cells against non-synonymous tumor-associated antigens are not deleted by central tolerance in the thymus
 - Checkpoint inhibition appears to work by enabling preexisting T cell responses against neoepitopes to expand and become tumoricidal
 - Immunizing patients against their own neo-antigens with an attenuated live vector will generate or enhance T cell responses against neoepitopes

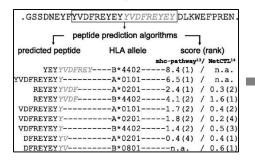
Because the T cell responses are only directed against mutated neoepitopes there should be no off-target toxicity

Targeting Neoepitopes with *Lm* Technology™ Advantages for Personalized Immunotherapy

Advaxis's *Lm* Technology™ may have advantages for targeting neoepitopes

- Bandwidth—5 constructs can present >250 tumor neoepitopes to T-cells
- 2) CTLs infiltrating the tumor are more effective at killing tumor cells because of decreased Tregs and MDSCs
- 3) Lm is synergistic with checkpoint inhibitors

- tLLO—TAA fusion protein is a synthetic peptide presenting multiple neoepitopes secreted into the cytoplasm of the APC
- 80-100 plasmid copies per bacteria
- Payload for up to >50 neoepitopes per construct—up to 2k+ amino acids
- Multiple constructs can be administered for larger numbers of neoepitopes
- Adjuvants built in (TLRs, PAMP, STING, DAMP, NOD1, NOD2, CpG)
- Treatments can be given repeatedly without neutralizing antibodies
- Generate strong innate and adaptive T cell response, even to lower avidity epitopes
- Decreases Tregs and MDSCs in the tumor microenvironment


Project APOLLO Schema How would it work?

Academic or Commercial Massively Parallel Sequencing

Sequencing to identify nonsynonomyous mutations

Identify neoepitopes

Advaxis Immunotherapies

Advaxis designs vector based on neoepitopes

DNA synthesis – molecular cloning into plasmids

Transfection into personalized vector, QA/QC – OK

Ship to patient's institution

Patient's Hospital or Treating Institution

Treat patient with personalized immunotherapy vector based on his/her neoepitopes

Multiple cycles of treatment and combination with RT, PD-1, co-stims possible

Our Collaborations & Milestones

LM-LLO IMMUNOTHERAPY: A VERSATILE, INNOVATIVE PLATFORM

Advantages of *Lm* Technology™

Efficacy Attributes

- High expression and secretion of tLLO/ fusion protein (tumor associated antigen [TAA])
- Large payload size for delivering tumor antigens—up to 2,000 amino acids per construct
- Efficacy as monotherapy (includes CR, PR and increased survival)
- No need for preconditioning agents to enhance therapeutic effect
- Potential for synergy with checkpoint inhibitors, including inhibitors of PD-1, PD-L1, IDO, and CTLA4, as well as co-stimulatory molecules, such as OX40 and GITR
- Impacts tumor microenvironment (TME) by disabling Tregs & MDSCs

Safety Attributes

- Strong attenuation of axalimogene filolisbac with established safety
- Dosed up to 5x10^9 in humans with potential to go higher
- Predominantly Grade 1 and 2 AEs in 260+ patients treated to date
- No cases of lymphopenia
- ~1% Grade 3 AEs

IP Attributes

- Exclusively in-licensed original IP from UPENN where Lm platform was invented
- Any other Lm technologies must avoid infringing on this IP
- 80+ issued and 80+ pending patents worldwide for platform, product candidates, methods, manufacture, process and formulation

Novel Combination Therapy Collaborations

Entered into an R&D Collaboration with

ADVAXIS

IMMUNOTHERAPIES™

Phase 1/2 study evaluating the safety and efficacy of axalimogene filolisbac in combination with durvalumab (MEDI4736) (anti-PD-1)

July 2014

Phase 1/2 study evaluating the safety and efficacy of ADXS-PSA in combination with KEYTRUDA® (pembrolizumab) (anti-PD-1)

August 2014

Phase 2 study evaluating the safety and efficacy of axalimogene filolisbac as a monotherapy and in combination with INCB24360 (epacadostat) (IDO1)

February 2015

Evaluation of *Lm* Technology™ immunotherapies plus antibodies targeting GITR, OX40, LAG-3 and TIM-3

May 2015

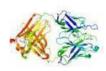
Strategic, Value-Building Opportunities

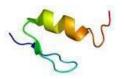
Entered into a licensing agreement with

A D V A X I S

- ADXS-HER2 (animal health)
- Canine osteosarcoma + 3 additional products

- Axalimogene filolisbac
- HPV-associated cervical cancer
- Axalimogene filolisbac
- HPV-associated cancers


Platform Versatility


Single Antigen Constructs

PSCA
Prostate Cancer PreClinical


CA9 Renal and Others Pre-Clinical

WT-1 Several (Pan) Pre-Clinical

CEA Ovarian Pre-Clinical

Lm-LLO +

Survivin Lymphoma Pre-Vet

HMW-MAA Lymphoma Pre-Clinical

FAP Breast CA Pre-Clinical

IL13RA2 Solid Tumors Pre-Clinical

P53 Breast CA Pre-Clinical

VEGF-r2 Solid Tumors Pre-Clinical

SCCE-KLK7 Ovarian, others Pre-Clinical

Endoglin (CD-105) Breast CA Pre-Clinical

ISG 15 Bladder Pre-Clinical

Advaxis has developed several product constructs leveraging the company's platform technology

Financial Summary

Cash Summary

- Cash as of April 30, 2015
 - ✓ \$45.9M
- Cash as of July 31, 2015
 - ✓ \$97.1M
- Cash receivables since Jul'15
 - ✓ \$25.0M (gross) Registered Direct (August)
- Capital raised since October '13
 - ✓ ~\$165M
- No Debt

Equity Summary

- Basic Shares Outstanding (as of 9/9/15)
 - ✓ 33.4M
- Warrants and Options
 - ✓ 3.3M and 1.9M (as of 7/31/2015)
- Pro-forma Fully Diluted
 - ✓ 38.6M

Leadership Accountability

	Out of Pocke	Out of Pocket Funds (1)		Company Incentive Awards (1)		
	Gross \$	net shares	vested	unvested		
Daniel J. O'Connor	\$662,903	153,316	115,760	83,333		
David J. Mauro	\$45,550	6,196	32,884	151,333		
Gregory T. Mayes	\$180,737	27,036	36,845	75,000		
Robert G. Petit	\$128,648	28,427	47,132	56,652		
Sara M. Bonstein	\$96,710	26,406	34,530	33,333		

(1) Above figures are as of September 1, 2015

Represents RSU awards & share purchases only; Does not include option and/or warrants.

Management voluntarily purchases restricted stock directly from the Company every two weeks at market price

ADVAXIS

IMMUNOTHERAPIES™

305 College Road East, Princeton, NJ www.advaxis.com ir@Advaxis.com