

The Tumor Recall Response of Antitumor Immunity Primed by a Live, Recombinant Listeria monocytogenes Vaccine Comprises Multiple Effector Mechanisms¹

Larry M. Weiskirch, 2,3 Zhen-Kun Pan,2 and Yvonne Paterson4

Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076

Listeria monocytogenes, a facultative intracellular bacterium, can induce a potent antitumor immune response if engineered to express a model tumor antigen also expressed by the tumor cells. The effectiveness of this approach is dependent on L. monocytogenes-induced tumor-specific CD4+ and CD8+ T-cells. CD8+ Tcells may mediate tumor eradication largely through direct CTL activity, but the role of CD4+ T-cells and other cells of the immune system is less clear. Here we investigate their role and the role of the cytokines they produce in the ability of L. monocytogenes-induced antitumor immunity to protect against tumor challenge. Our results suggest that a complex cytokine response, involving type 2 as well as type 1 cytokines, is responsible for the ability of Lm-NP-immunized mice to resist tumor challenge, potentially mediating tumor cell killing through multiple effector pathways. © 2001 Academic Press

Key Words: tumor immunity; immunotherapy; Listeria monocytogenes; Th1/Th2; cytokines.

INTRODUCTION

Listeria monocytogenes is a facultative intracellular pathogen which infects and activates macrophages and has the unusual ability to avoid phagolysosomal destruction by breaking out of this compartment and living in the cytoplasm of the cell. L. monocytogenes enters macrophages by phagocytosis and then escapes into the cytoplasm by secreting virulence factors, including a hemolysin (listeriolysin O; LLO) and phospholipase C, that induce lysis of the phagolysosome. This escape process, however, is inefficient, and about 90% of the entering bacteria are killed and degraded in the phagolysosomal compartment (1). Successful infiltration to the cytoplasm of infected cells enables bacterial replication. Infection of adjacent cells can subsequently occur, by a direct cell-to-cell spreading mechanism, which allows L. monocytogenes to avoid contact with the extracellular environment (2). Infected macrophages respond rapidly by secreting IL-1, IL-6, and TNF- α (3). In addition, IL-12 production is induced, leading to the secretion of IFN- γ by NK and $\gamma \delta TCR^+$ T-cells (4, 5). IFN- γ , in turn, activates macrophages and increases killing of L. monocytogenes. In addition to macrophages and NK cells, γδ T-cells (6, 7) and neutrophils (8, 9) play an important role in the early control of infection, and neutrophils apparently kill infected hepatocytes (10). Although this innate immune response successfully limits infection, complete eradication of *L. monocytogenes* requires the acquisition of T-cell-mediated immunity, and both CD8⁺ and CD4⁺ T-cells are generated in response to infection. T-cells also mediate protection against subsequent challenge with *L. monocytogenes* (7, 11, 12). The memory response to *L. monocytogenes* is largely effected by CD8⁺ T-cells (11, 12) and may be mediated by perforin as well as TNF- α and CD95-ligand expression (13, 14). CD4⁺ cells, although less effective than CD8⁺ cells, can also contribute to anti-L. monocytogenes immunity, inducing a delayed-type hypersensitivity response (11,

Infection with *L. monocytogenes*, therefore, induces a predominantly type-1 (T1;⁵ Th1)-like immune response, characterized by the expression of IL-12 and

⁵ Abbreviations used: Lm-Gag, recombinant Listeria monocytogenes strain that secretes a fusion protein consisting of Gag of HIV-1 plus part of the hemolysin of L. monocytogenes; Lm-NP, recombinant L. monocytogenes strain that secretes a fusion protein consisting of the nucleoprotein of influenza strain A/PR/8/34 plus part of the hemolysin of *L. monocytogenes;* T1, type 1 cytokine pattern; T2, type 2 cytokine pattern.

¹ This work was supported by NIH RO1 CA69632 and in part by a grant from SmithKline Beecham Biologicals S.A., Rixenart, Belgium. L.M.W. was supported by NIH Training Grant T32 CA09140.

² These authors contributed equally to this work.

³ Present address: Department of Biology, Beaver College, Glenside, PA 19038.

⁴ To whom correspondence should be addressed at the Department of Microbiology, University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104-6076. Fax: (215) 573-4666. E-mail: yvonne@mail.med.upenn.edu.

IFN- γ (15, 16). Although the type 2 (T2; Th2)-associated cytokine IL-10 is also eventually produced in the course of the anti-*L. monocytogenes* immune response, the effect is downregulatory, functioning to limit both the production of IL-12 and the effect of IL-12 on NK cells (16). IL-4, another potentially important immunoregulatory T2-associated cytokine which can downregulate T1-associated immune responses and stimulate T2 immune responses, is expressed very early in the course of infection, functioning to induce secretion of the chemokine monocyte chemoattracting protein-1 (17–19). However, the IL-4 response is transient and begins to diminish as quickly as 3 h after infection, apparently as a result of the inactivation of CD4⁺ $\vec{N}\vec{K}1^+$ $\alpha\beta$ - $\vec{T}CR^{intermediate}$ NKT cells by IL-12 and IFN- γ (20). The overall immunological relevance of this very early IL-4 production, however, is unclear, since ablation of IL-4 with anti-IL-4 mAb treatment prior to listerial challenge was shown to enhance the expression of anti-L. monocytogenes immunity, as measured by reduced numbers of *L. monocytogenes* subsequently recoverable from spleen and liver (21). This suggests that the net effect of IL-4, like IL-10, is inhibition of anti-listerial immunity.

The immunobiology of the host-pathogen interaction makes L. monocytogenes an attractive potential live vaccine vector. The first demonstration that a live *L.* monocytogenes recombinant expressing a transgenic antigen could be used to immunize mice (22) indicated that antigen-specific CTL could be generated following infection either orally or ip. The efficacy of this vaccination strategy was evaluated in a tumor system, using an L. monocytogenes strain (Lm-NP) engineered to secrete a fusion protein consisting of the first 420 amino acids of listeriolysin-O followed by the nucleoprotein (NP) of influenza (23, 24). Immunization with Lm-NP protected mice from subsequent challenge with either Renca or CT26 tumor cells retrovirally transduced to express the NP antigen. In addition, mice bearing established, macroscopic tumors could be effectively treated with Lm-NP, leading to substantial inhibition of tumor growth or even complete tumor regression in some mice. Immunohistochemical analysis of tumor nodules from Lm-NP-immunized mice revealed substantial infiltration of the tumors by both CD8⁺ and CD4⁺ T-cells, and depletion of either T-cell subset during the effector phase of the immune response inhibits the ability of *L. monocytogenes* to protect against tumor challenge. The CD8⁺ T-cells may mediate tumor killing by CTL activity in vivo, since Lm-NP-immunized mice generate strong NP-specific CTL that will kill tumor cells transduced with NP *in vitro* (23, 24), but the role of CD4⁺ T-cells is less clear.

There has been a recent burgeoning of interest in the role of CD4⁺ T-cells in antitumor immunity against

MHC class II-negative tumors (25). A cognate cytolytic effect by these cells is unlikely, since the tumors do not express the appropriate MHC-restriction element. A requirement for CD4⁺ T-cells in the induction of antitumor CTL responses has been noted (26, 27). However, this is not an adequate explanation in our case, since abrogation of protection against tumor challenge by CT26-NP or Renca-NP when CD4⁺ T-cells are depleted occurs at a time when the secondary population of CD8⁺ T-cells has already been induced by immunization with *L. monocytogenes*. The two most likely explanations are that CD4⁺ cells are required for the production of cytokines, such as IL-2, which may be required to maintain NP-specific T-cells in an activated state (28) or to enhance the ability of the CD8⁺ population to expand when recalled by tumor-expressed antigen. Second, the presence of CD4⁺ T-cells within the tumor suggests a role for bystander necrosis perhaps via inflammatory cytokines produced by these cells or other cells. Adoptively transferred CD4⁺ T-cells have been demonstrated to slow tumor growth in the absence of transferred CD8⁺ T-cells (29), although this may be due to their ability to facilitate the induction of CD8⁺ T-cells to endogenous tumor antigens rather than a direct tumoricidal effect (30). Any postulated mechanism requires the presentation of tumor-associated antigens to CD4⁺ T-cells which cannot be mediated by the tumor cells themselves, thus implying a role for professional antigen-presenting cells in tumorexpressed antigen recall of *L. monocytogenes*-induced T-cells.

In the present study, we wished to examine the requirement for the professional antigen-presenting cells, macrophages and dendritic cells, in addition to NK cells, in expression of Lm-NP-induced immunity against CT26-NP tumor cells. We also sought to determine the role of cytokines, particularly those that are produced only by CD4⁺ T-cells, in this recall response. Other workers have used mice genetically engineered to eliminate single immune components for such studies (so-called "knockout" mice). However, the antitumor immunity induced by *L. monocytogenes* is the result of an active infection by a bacterial pathogen, the immune response to which is seriously modified in such animals. Accordingly, to allow for proper clearance of the live bacterial vaccine, we selectively depleted these cellular subsets after Lm-NP immunization, at the time of tumor challenge. Depletion of dendritic cells and NK cells greatly reduced protection against tumor challenge, whereas, surprisingly, macrophage depletion did not. Using a similar approach we also identified several cytokines, IL-12, GM-CSF, and IL-6, which are the products of these nonadaptive immune system cells, that are also required for maximal recall responses to NP. In addition, we examined the

role of T-helper cell cytokines. Whereas antibodies against IFN- γ , TNF- α , IL-2, and IL-4 administered at the time of tumor challenge significantly inhibited protective antitumor immunity, neutralization of IL-10 or administration of a control antibody had no effect. Thus both T1 and T2 cytokines appear to be important in the recall response to NP induced by CT26-NP. Taken together, these results indicate that a complex cytokine response is responsible for the ability of Lm-NP-immunized mice to resist tumor challenge. The results will be discussed in the context of the multiple possible effector pathways that may be utilized for tumor cell killing.

MATERIALS AND METHODS

Plasmids and Bacterial Strains

The *L. monocytogenes* strain principally used in this study is Lm-NP (DP-L2028) (31). This strain is derived from a prfA (virulence regulon transcription factor)-defective mutant of the wild-type strain 10403S that has been stably transfected with a plasmid containing prfA and a fusion protein gene encoding the first 420 amino acids of LLO, a secreted L. monocytogenes hemolysin, coupled to the NP gene of influenza strain A/PR/8/34. Lm-NP secretes large amounts of LLO-NP fusion protein, which is expressed under the control of the LLO promoter. The LD₅₀ of Lm-NP is $1-2 \times 10^8$ colony-forming units upon intraperitoneal injection. For reference, mice in control groups were infected with a recombinant strain of L. monocytogenes expressing a fusion protein consisting of the promoter and signal sequence of the LLO gene and the Gag gene of HIV-1 (strain Lm-Gag); the construction of this strain has been previously described (32). Lm-Gag has approximately the same LD₅₀ as Lm-NP in BALB/c mice (5 \times 10⁷ pfu), allowing us to deliver approximately the same number of bacteria to control groups.

Lm-NP was prepared for injection by culture at 37°C in brain–heart infusion broth (Difco Laboratories, Detroit, MI) supplemented with 10 μ g/ml chloramphenicol. Lm-Gag, which does not require antibiotic selection to retain expression of the viral transgene, was grown under similar conditions without chloramphenicol. After overnight growth, the broth culture was aliquoted and stored at -70° C; the culture density was determined by optical density and enumeration of colony-forming units following platings of dilutions of the broth culture medium. Individual aliquots were thawed as needed and washed three times in PBS prior to injection.

Hybridomas and mAb Preparation

C17.8, with specificity for mouse IL-12 p40, and XT22.11, with specificity for mouse TNF- α , were a generous gift from Giorgio Trinchieri (Wistar Institute, Philadelphia, PA). Ascites from the Xmg1.2 hybridoma, specific for mouse IFN-γ, was a generous gift from Drew Pardoll (Johns Hopkins University School of Medicine, Baltimore, MD). 33D1, specific for a subset of dendritic cells, was a generous gift from B.-D. Sheng (University of Pennsylvania School of Medicine, Philadelphia, PA). SH-34, specific for asialo-GM-1, was a generous gift from Robert Stout (Eastern Tennessee State University, Johnson City, TN). JES5-2A5, specific for IL-10, was a generous gift from Robert Coffman (DNAX Research Institute, Palo Alto, CA). 11B11, which produces an anti-mouse IL-4 mAb, and S4B6, which produces an anti-mouse IL-2 mAb, were obtained from the American Type Culture Collection (ATCC; Rockville, MD). MP1-22E9, specific for granulocyte-macrophage colony-stimulating factor; MP5-20F3, specific for IL-6; and GL117.41, which produces an anti-*Escherichia coli* β -galactosidase, were obtained from the ATCC with permission from DNAX Research Institute. The mAb used for *in vivo* depletion experiments were produced as ascites, following the protocol of Yokoyama (33). Briefly, SCID mice (Charles River Laboratories, Wilmington, MA) were injected with 5 \times 10⁶ hybridoma cells at least 7 days after ip treatment with 0.5 ml of pristane (Sigma Chemical Co., St. Louis, MO). Ascites was collected aseptically and antibody was affinity-purified on protein G-Sepharose columns (Pharmacia Biotech, Inc., Piscataway, NJ). In vivo ascites production was performed according to guidelines provided by the University of Pennsylvania Institutional Animal Care and Use Committee.

Tumor Cell Lines

CT26, an *N*-nitroso-*N*-methylurethane-induced murine colon carcinoma syngeneic in BALB/c mice (34), is MHC class I positive and MHC class II negative. The NP gene of influenza strain A/PR/8/34 was inserted into the tumor line by retroviral transduction using a replication-incompetent Moloney leukemia virus system, generating CT26-NP, as previously described (35). The expression of NP does not alter the tumorogenicity of the tumors: the minimal lethal tumor dose for both CT26-NP and CT26 is 5×10^3 .

Tumor Challenge Experiments

BALB/c mice, 6-8 weeks of age, were obtained from Charles River Laboratories. The animal use protocol

for these studies has been approved by the University of Pennsylvania Institutional Animal Care and Use Committee. The mice were immunized with Lm-NP or Lm-Gag by ip inoculation with $0.1 \times LD_{50}$, followed by a second ip inoculation of $0.1 \times LD_{50}$ 2 weeks later. After an additional 2 weeks, 5×10^5 CT26-NP tumor cells were injected sc on the right hind flank. Depletion of specific cytokines and cell subsets was started 1 day prior to tumor challenge as described below. Eight mice were used for each experimental group. Mice were followed for tumor growth, and tumor sizes were determined as the average of the longest and shortest diameters, as measured by calipers. Tumor-bearing mice were sacrificed when tumor sizes reached about 20-25 mm in average diameter or if animals showed signs of ill health or distress.

Cell and Cytokine Depletion

Macrophages were depleted by iv treatment with liposomes containing the cytotoxic drug clodronate (dichloromethylene bisphosphonate), which induces macrophage apoptosis (36). Clodronate was generously provided by Boehringer Mannheim GMBH (Mannheim, Germany). The liposomes containing clodronate solution were made following the method of van Rooijen and Sanders (37). Cholesterol (8 mg) and phosphatidylcholine (0.86 mg) were dissolved in 10 ml of chloroform and evaporated onto the sides of a roundbottom flask. The resulting phospholipid film was then dispersed in a 0.6 M clodronate solution in PBS and rotated at approximately 150 rpm for 10 minutes. After a 2-h incubation at room temperature, the liposome suspension was sonicated in a water bath sonicator, incubated overnight at 4°C, washed thrice by centrifugation, and then resuspended in 4 ml of PBS. As a control, liposomes were also prepared with PBS vehicle alone. Initial liposome injections consisted of 0.25 ml of this suspension delivered iv 1 day before tumor cell challenge; subsequent treatments of 0.1 ml were administered every 5 days thereafter. The effectiveness of macrophage depletion was evaluated by flow cytometric analysis for expression of F4/80 in mice treated with clodronate-containing liposomes compared to PBS-containing liposomes. Four days after treatment with the initial dose of liposomes, more than 75% of the F4/80expressing cells were typically removed from the spleen. Spleens from mice evaluated at the conclusion of the experiment by FACS analysis had 62% fewer F4/80⁺ splenocytes than controls.

All other *in vivo* depletions were performed using antibodies specific for that immune component essentially as previously described (38). Each experiment was performed at least twice with reproducible results, summarized in Table 1. Briefly, mice received mAb

treatments ip on days -1, 0, 1, 4, 8, and 12 relative to tumor challenge, at a dose of 1.2 mg (unless otherwise noted) per treatment. To control for nonspecific effects other groups of mice received either 1.2 or 3.0 mg of anti- β -galactosidase antibody of the same isotype. The efficacy of mAb depletion of NK cells with SH-34 and dendritic cells with 33D1 was determined by FACS analysis of splenocytes on four individual mice. Although complete depletion of either of these subsets was not achieved, 42 to 72% of NK cells and approximately 50% of 33D1-positive dendritic cells were depleted by this treatment. It is known that some cell surface markers are not as cell specific as originally described. For example RB6-8C5, which binds to the granulocyte marker Ly6-G, was reported to specifically delete granulocytes and to not bind to monocyte-macrophage or lymphocytic cells (38). However, we (Pan and Paterson, unpublished observation) and others (9) have observed that *in vivo* administration of this antibody at the levels required to deplete granulocytes will also deplete T-cells. In addition, the NK cell marker asialo-GM1 (39) has been shown to be expressed on virus-specific CD8⁺ T-cells (40). We were careful, therefore, to examine the effects of the 33D1 and SH-34 antibody-depletion protocols on the CD4⁺ and CD8⁺ T-cell compartments in the spleens of treated mice by FACS analysis and found no reduction in either of these T-cell subsets.

Statistics

For comparisons of tumor diameters, the mean and standard deviation of tumor size for each treatment group were determined, and statistical significance was determined by Student's t test (41). In all experiments, a P value less than or equal to 0.05 was considered significant.

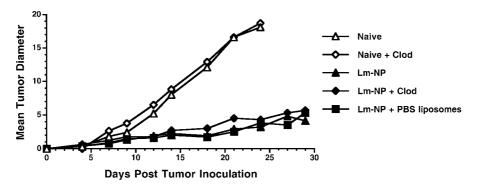
RESULTS

Effect of Depletion of Macrophages and Dendritic Cells on Lm-NP-Induced Protective Antitumor Immunity

In light of the observation that CD4⁺ T-cells accumulate in the CT26-NP tumor site of Lm-NP-treated mice (23), even though the tumor cells express little or no MHC class II, we sought to determine the importance of macrophages as professional antigen-presenting cells of NP for Lm-NP-induced antitumor immunity. To deplete macrophages, a group of Lm-NP-immunized mice was treated with clodronate-containing liposomes iv (37) beginning 1 day prior to tumor cell challenge. For reference, groups of immunized mice were also treated with PBS-containing liposomes or

were left untreated. As shown in Fig. 1, clodronate treatment of immunized mice did not significantly affect the growth of the CT26-NP tumors, compared to immunized mice treated with PBS-containing liposomes. Treatment of naive tumor-bearing mice with clodronate-containing liposomes did not affect the growth rate of the CT26-NP tumors compared to untreated naive mice. Clodronate treatment does not completely deplete the entire macrophage population; however, only 25% of F4/80-expressing cells remain in the spleen. Although we cannot rule out the possibility that this residual macrophage population plays a role in antitumor immunity, the fact that the depletion of the majority of F4/80-expressing cells has a complete lack of impact on tumor growth suggests that macrophages do not appear to be essential for the protective antitumor immunity induced by immunization with Lm-NP.

CD4⁺ T-cells clearly play a role in the expression of protective antitumor immunity following immunization with Lm-NP, because depletion of this subset at the time of tumor challenge reduces the ability of immunized mice to resist tumor challenge (23). If macrophages are not required for the expression of antitumor immunity, it is conceivable that a different MHC class II-expressing antigen-presenting cell is necessary for antitumor immunity. Accordingly, we depleted Lm-NP-immunized mice of dendritic cells using mAb 33D1 (42) administered at the time of tumor challenge. 33D1 recognizes a marginal zone marker that was originally reported to be present on 80 to 90% of splenic dendritic cells (43). It is now thought that the proportion of dendritic cells expressing this marker may be somewhat lower in other populations (44). Nevertheless, despite this and the fact that complete depletion of dendritic cells was also not achieved, in marked contrast to the depletion of macrophages, depletion of 33D1⁺ dendritic cells significantly reduced the ability of Lm-NP-immunized mice to resist tumor cell challenge (Fig. 2a and Table 1).

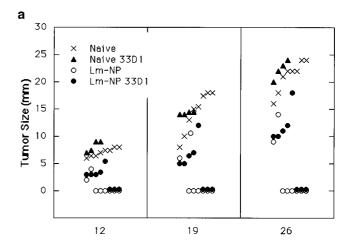

Effect of Depletion of Asialo-GM-1-Bearing Cells on Lm-NP-Induced Protective Antitumor Immunity

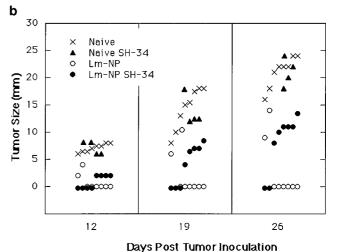
NK cells are a prominent component of the innate immune response to *L. monocytogenes*. To evaluate the role of NK cells in antitumor immunity, mice were immunized twice with Lm-NP and then treated with the anti-asialo-GM-1 mAb SH34, beginning 1 day before tumor cell challenge. Following challenge with 5×10^5 CT26NP tumor cells, mice that had received immunization with Lm-NP exhibited strong protective antitumor immunity, with six of eight mice tumor free (Fig. 2b). However, treatment with anti-asialo-GM-1 substantially impaired the antitumor immune re-

sponse, and only two of eight mice resisted challenge. Although the tumor size in anti-asialo-GM-1 mAbtreated mice was not statistically different from that of untreated mice at day 26 ($P \le 0.1$, Table 1), by day 40 the difference in the average size of the tumors between the two groups was significant ($P \le 0.01$). Growth of the tumor cells does not appear to be affected by anti-asialo-GM-1, since tumor sizes were not significantly different in naive (unimmunized) mice in the presence or absence of antibody treatment. Thus, asialo-GM-1-expressing cells appear to be an important component of the antitumor immune response induced by immunization with Lm-NP.

Effect of Depletion of Cytokines on Lm-NP-Induced Tumor Eradication

To identify the contribution of cytokines to the protective antitumor immunity that results from immunization with Lm-NP, mice were treated ip with neutralizing monoclonal antibodies beginning 1 day before tumor cell challenge and continuing until 12 days after challenge. The data from a single cytokine depletion experiment are shown in Fig. 3. The results summarized in Table 2 include replicate experiments for each cytokine depletion. The protective effect of Lm-NP immunization was effectively eliminated by depletion of IL-12 or IFN- γ (Fig. 3a, Table 2) and tumor sizes were not significantly different from those of naive tumorbearing mice. Depletion of TNF- α (Fig. 3b, Table 2) also reversed the ability of Lm-NP-immunized mice to resist tumor cell challenge, although the inhibition of antitumor immunity was less complete, compared to naive mice, than with anti-IL-12 or anti-IFN-γ treatment. Likewise, depletion of either IL-2, GM-CSF, IL-6, or, surprisingly, IL-4 substantially inhibited the ability of Lm-NP-immunized mice to resist challenge, although the inhibition of antitumor immunity appeared incomplete, since Lm-NP-immunized mice treated with these antibodies were still able to effect tumor growth (Figs. 3c-3e, Table 2). In contrast, depletion of IL-10 (Fig. 3f, Table 2) did not significantly affect the level of protection exhibited by Lm-NP-immunized mice. Likewise, treatment of Lm-NP-immunized mice with equivalent doses of a control mAb of irrelevant specificity did not affect tumor growth relative to Lm-NP-immunized mice not treated with mAb (Fig. 3b, Table 2). To verify that mAb treatments were not directly affecting the growth of the tumor cells, naive (unimmunized) CT26-NP tumor-bearing mice were treated with the same dose of the anti-cytokine mAbs; no statistically significant effect was observed (data not shown). Thus, cytokines associated with both T1 and T2 immune responses contribute to the expres-


FIG. 1. Effect of macrophage depletion on the ability of Lm-NP-immunized mice to resist subsequent tumor challenge. Beginning 13 days after the second immunization, at a time when the live Lm-NP infection would have been cleared, the mice were treated iv with clodronate liposomes to deplete macrophages. Results are presented as the mean of tumor sizes for each group.


sion of the protective antitumor immunity induced by treatment with Lm-NP.

DISCUSSION

We have previously shown that immunization of mice with a live recombinant *L. monocytogenes* vaccine expressing the model tumor antigen NP induces a potent cell-mediated immune response capable of protecting mice from subsequent tumor challenge in a CD4⁺ and CD8⁺ T-cell-dependent manner. CD8⁺ T-cells were previously found to be essential to the antitumor immune response induced by Lm-NP, and spleen cells from Lm-NP-immunized mice were found to generate potent CTL activity against CT26-NP tumor cells (23, 24), but the role of CD4⁺ T-cells was less clear. In this study, we identify seven cytokines and two non-T-cell immune cells, dendritic cells and NK cells, which are important mediators of antitumor immunity.

CT26-NP recall of NP-specific CD4⁺ T-cells induced by Lm-NP must involve presentation of the NP tumor antigen by professional MHC class II-bearing cells since CT26 is MHC class II⁻. The studies described here clearly indicate that dendritic cells may play a role in that process since even their partial depletion has a significant impact on antitumor immunity recalled by CT26-NP. However, dendritic cells also play an important role in the cross-talk between the adaptive and the innate immune systems. They are potent secretors of IL-12, which itself activates NK cells to secrete interferon-y. We have shown that all of these factors, NK cells, IL-12, and IFN-γ, are required for maximal antitumor immunity recalled by tumor challenge; thus we cannot rule out the possibility that dendritic cells also act via innate immune mechanisms through IL-12 secretion. In contrast, depletion of the other major subset of antigen-presenting cells, macrophages, made no impact on tumor growth. This sur-

FIG. 2. Effect of depletion of dendritic cells and asialo-GM-1-expressing cells on the ability of Lm-NP-immunized mice to resist tumor challenge. Lm-NP-immunized mice were treated with 1.2 mg of anti-dendritic cell mAb 33D1 (a) or anti-asialo-GM-1 mAb SH-34 (b). Symbols represent tumor size in one mouse; data are depicted for representative time points.

TABLE 1			
Summary of in	Vivo Cell	Depletion	Studies

Treatment group	Cell type depleted	Days post-tumor challenge	Mean of individual tumor diameters (mm \pm SD)	Significance relative to Lm-NP alone
Lm-NP + clodronate liposomes	Macrophages	32	4.1 ± 3.9	$P \leq 0.9$
Lm-NP + PBS liposomes	Macrophages	32	4.7 ± 4.5	$P \leq 0.9$
Lm-NP alone	None	32	$4.4 \ \pm 4.6$	
Lm-NP + antibody 33D1	Dendritic cells	26	11.0 ± 8.45	$P \le 0.01$
Lm-NP alone	None	26	2.56 ± 4.99	
LM-NP + antibody SH-34	NK cells	26	8.06 ± 5.2	$P \leq 0.1$
J	NK cells	40	15.06 ± 6.36	$P \le 0.01$
Lm-NP alone	None	26	2.88 ± 6.36	
	None	40	4.0 ± 8.49	

prising result suggests that macrophages may not act as antigen-presenting cells in the recall response. The role of macrophages in modulating tumor growth, however, is complicated. Although macrophages are found in tumors and surrounding stroma, their impact on tumor growth can be both positive and negative depending on their state of activation and the cytokines that they secrete. Macrophages are an important source of proinflammatory cytokines such as IL-12, IFN- γ , and TNF- α which can be tumoricidal. However, tumor-infiltrating macrophages can also be the source of immunosuppressive cytokines, angiogenic factors, and prostaglandins (reviewed in 45). Indeed, macrophages isolated from various murine and human tumor cells are known to enhance the proliferation of tumor cells (45, 46). Thus it is possible that depletion of macrophages could have an impact on presentation of tumor-associated antigen, in addition to other innate effects that control tumor growth, but that these are compensated by removal of macrophage-dependent mechanisms that enhance tumor growth.

We reported previously that immunization with Lm-NP induces infiltration of the tumors by both CD4⁺ and CD8⁺ cells in an antigen-specific manner, since Lm-NP-immunized mice bearing tumors from the parental cell line (not transduced to express NP) do not exhibit T-cell infiltration (23). It is likely that at least some of the cytokine production on tumor recall is the direct or indirect result of NP-specific T-cell activation. In addition, the variety of other leukocytes infiltrating the tumor, including dendritic cells and NK cells, may also contribute to the cytokine milieu, either due to activation by T-cell-derived cytokines or as a consequence of prior immunization with the live *L. monocy*togenes. Additionally, the detection of CD4-expressing cells does not necessarily distinguish between conventional MHC-restricted CD4⁺ T-cells versus NKT cells, which express $\alpha\beta$ TCR as well as NK markers such as NK1 and which can be CD4 intermediate, CD4 low, or CD4. The production of a variety of cytokines, including IL-4

and IFN- γ , has been attributed to NKT cells (47), and NKT cells can mediate tumor clearance *in vivo* in an IL-4- or IL-12-dependent fashion (48–51).

Of the cytokines identified, IFN- γ , IL-2, and TNF- α are generally considered to be products of T1 CD4⁺ helper cells and/or CD8⁺ T-cells. The importance of these cytokines for protection against tumor cell challenge is not surprising, because sterilizing anti-Listeria immune responses are thought to be classically T1 CD4⁺ and CD8⁺ dependent (3, 52). It has been suggested (53) that IL-2 and IL-12 are required for the recall of a memory CD8⁺ T-cell response in the absence of an active infection, as is the case upon CT26-NP tumor cell challenge of mice previously immunized with Lm-NP. In addition, expression of either TNF- α or IL-2 can competitively overcome the effect of TGF- β (54–56), a potentially immunosuppressive cytokine capable of downregulating CTL responses (54, 55, 57), which is secreted by CT26 (Beatty and Paterson, unpublished observation). Thus, the requirement for IL-2, IL-12, IFN- γ , and TNF- α is consistent with the contribution of CTL to tumor eradication.

Interestingly, the protective antitumor immune response induced by Lm-NP is also abrogated by depleting the T2-associated cytokine IL-4. The anti-IL-4 mAb treatment does not seem to directly affect the growth of the CT26-NP tumor cells, since treatment of unimmunized mice with the same dose of mAb does not significantly affect tumor growth. Moreover, neither the anti-IL-4 mAb nor the added IL-4 affects the in vitro growth of CT26-NP tumor cells (data not shown). The importance of IL-4 for tumor eradication following immunization with Lm-NP is surprising because IL-4 is not believed to significantly enhance the anti-*L. mono*cytogenes immune response. In the experiments reported here, CT26-NP tumor challenge took place 4 weeks after initial induction of the NP-specific T-cell response. Thus, even though Lm-NP infection induces a classic T1-type immune response, the expression of a memory response to the NP antigen expressed by CT26

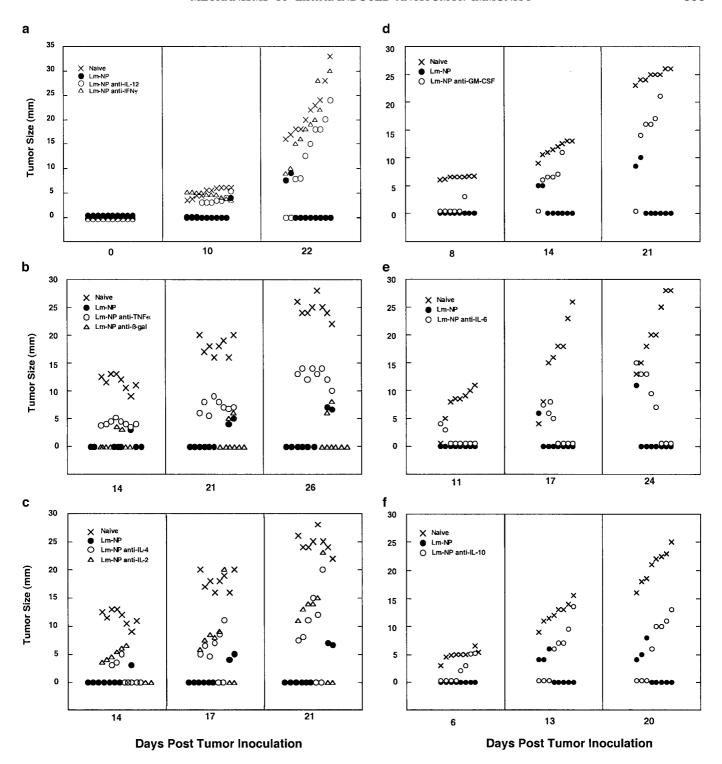


FIG. 3. Effect of anti-cytokine mAb treatment on the ability of Lm-NP-immunized mice to resist subsequent CT26-NP tumor challenge. Mice were preimmunized with 0.1 LD₅₀ of live Lm-NP and then challenged with CT26-NP; mAb treatments of 1.2 or 3.0 mg in PBS were administered on days -1, 0, 1, 4, and 8 relative to tumor inoculation. (a) Treatment with 1.2 mg of anti-IL-12 or anti-IFN- γ mAb. (b) Treatment with 3.0 mg of anti-TNF- α or irrelevant control mAb (anti- β -galactosidase). (c) Treatment with 1.2 mg of anti-IL-2 or anti-IL-4. (d) Treatment with 1.2 mg of anti-IL-10. For reference, a group of Lm-NP-immunized mice challenged with CT26-NP tumor cells was not treated with mAb (filled circles). The rate of tumor growth in naive (unimmunized) mice is also shown. Symbols represent tumor size in one mouse; data are depicted for representative time points.

	TABLE	2	
Summary of in	Vivo Cytokine	Neutralization	Studies

Treatment group	Days post-tumor challenge	Mean of individual tumor diameters (mm \pm SD)	Significance relative to Lm-NP alone
Lm-NP + anti-IL-12	22	$14.9 \ \pm 9.9$	$P \le 0.01$
Lm-NP + anti-IFN-γ		$23.9 \ \pm 5.2$	$P \le 0.001$
Lm-NP alone		2.6 ± 4.1	
Lm-NP + anti-IL-2	21	10.4 ± 6.6	$P \le 0.01$
Lm-NP + anti-IL-4		9.9 ± 8.4	$P \leq 0.05$
Lm-NP alone		2.1 ± 4.1	
Lm-NP + anti-TNF-α	21	11.1 ± 1.2	$P \le 0.001$
Lm-NP + anti-β-gal		1.75 ± 3.3	$P \leq 0.9$
Lm-NP alone		2.9 ± 4.2	
Lm-NP + anti-GM-CSF	21	14.5 ± 7.8	$P \le 0.01$
Lm-NP alone		2.3 ± 4.3	
Lm-NP + anti-IL-6	24	7.2 ± 6.4	$P \leq 0.05$
Lm-NP alone		1.4 ± 3.9	
Lm-NP + anti-IL-10	20	6.3 ± 5.5	$P \leq 0.1$
Lm-NP alone		2.1 ± 3.1	

tumor cells apparently requires IL-4. In addition, it has been shown that neutralization of IL-4 by treatment with mAb enhances clearance of *L. monocytogenes* infection (21), suggesting that IL-4-secreting cells actually are produced during infection even though a T1 response ultimately predominates. A recent study has demonstrated that IL-4 maintains the balance between T2 and T1 cells *in vivo* by enhancing IL-12 production by dendritic cells (58). Given that both IL-12 and dendritic cells are also required for maximal antitumor recall responses induced by Lm-NP, it is quite possible that IL-4 mediates antitumor immunity indirectly by this mechanism.

In addition to a potential role for IL-4 in promoting IL-12 production by dendritic cells during the tumor recall response, IL-4 may play a direct role in the antitumor recall response. It is now recognized that effective antitumor immune responses, unlike anti-Listeria immune responses, can involve a combination of T1 and T2 cytokines. Indeed, studies with knockout mice illustrate the essential role of IL-4 for the antitumor protective effectiveness of immunization with irradiated tumor cell vaccines (27, 59): in several tumor models, IL-4-deficient mice fail to develop protective antitumor immunity following vaccination. Hung and associates have shown that the potent anti-tumor immunity induced by GM-CSF-expressing irradiated B16F10 melanoma cells is dependent on the production of IL-4 and eosinophil infiltration at the site of tumor challenge (27). The protective antitumor immunity induced by immunization with irradiated TS/A mammary adenocarcinoma cells or CT26 tumor cells also is dependent on the presence of IL-4, apparently for the induction of an antitumor CTL response (59). Interestingly, Schuler et al. found a requirement for IL-4 at the

vaccine site, but not at the challenge site (59). Taken together, these studies indicate that IL-4 can directly play a critical role either at the induction stage or at the expression stage of the antitumor immune response.

The cytokines found to be important in the Lm-NP system could be involved in either the induction or the activation of effector functions. The protective antitumor immunity induced by Lm-NP was previously shown to be critically dependent on the participation of CD8⁺ T-cells, which exert potent CTL activity *in vitro* (23) and presumably also in vivo. Here, we present evidence that several other cell types and a number of cytokines also contribute to protective antitumor immunity. A variety of cytolytic effector cells, potentially including NK cells and macrophages, could conceivably be activated by the various cytokines determined to be important in the anti-NP memory response. A contribution of NK cells to protection against tumor challenge is suggested by the studies presented here. Given that CT26 tumor cells transduced to express NP eventually lose antigen expression in vivo (23), it is possible that nonspecific antitumor mechanisms may be required for protection against tumor challenge by eliminating NP antigen-loss variant tumor cells. Evidence for the existence of antigenically nonspecific effector mechanisms in the tumor nodules of Lm-NP-immunized mice comes from "innocent bystander" killing studies (Z.-K. Pan and Y. Paterson, unpublished observations): Lm-NP-immunized mice, when challenged with an admixture of the renal cell carcinoma-derived tumor line Renca-NP and the parental CT26 tumor cells, did not develop tumors, whereas injection of the two tumor lines into opposite sites did result in formation and progression of CT26 tumors, but not Renca-NP tumors.

In addition to a possible role in activating various effector cell populations, the cytokines may have other more direct effects on tumor growth. For example, IL-12 and IFN- γ are potent inhibitors of angiogenesis (60, 61), and we have shown that IFN- γ produced by CD4⁺ T-cells infiltrating CT26 tumors plays an important role in the early control of tumor growth (Beatty and Paterson, J. Immunol., in press). In addition, TNF- α , in combination with IFN- γ , can directly kill CT26-NP tumor cells (Beatty and Paterson, unpublished observation). At the same time, it is possible that these cytokines also facilitate the induction of T-cell responses against additional tumor-associated antigens during the expression of the anti-NP immune response against the CT26-NP tumor cell challenge. Lm-NP immunized mice that successfully resist CT26-NP challenge can sometimes resist a subsequent rechallenge with parental CT26 tumor cells, suggesting that recognition of endogenous tumor antigens can be induced (Weiskirch, Pan, and Paterson, unpublished observation). It is possible that some of the cytokines required during tumor cell challenge, perhaps including IL-4, facilitate the activation of naïve T-cells recognizing these tumor antigens. The importance of these additional T-cell responses induced during tumor cell challenge is currently under investigation.

ACKNOWLEDGMENTS

We thank Drs. Gregory Beatty, Drew Pardoll, Claudine Bruck, and Paul von Hoegen for helpful discussions and suggestions.

REFERENCES

- Chastellier, C., and Berche, P., Fate of *Listeria monocytogenes* in murine macrophages: Evidence for simultaneous killing and survival of intracellular bacteria. *Infect. Immun.* 62, 543–553, 1994.
- Tilney, L. G., and Portnoy, D. A., Actin filaments and the growth, movement, and spread of the intracellular parasite, *Listeria* monocytogenes. J. Cell. Biol. 109, 1597–1608, 1989.
- 3. Unanue, E. R., Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. *Immunol. Rev.* **158**, 11–25, 1997.
- Ladel, C. H., Blum, C., and Kaufmann, S. H., Control of natural killer cell-mediated innate resistance against the intracellular pathogen *Listeria monocytogenes* by gamma/delta T lymphocytes. *Infect. Immun.* 64, 1744–1749, 1996.
- Skeen, M. J., and Ziegler, H. K., Activation of gamma delta T cells for production of IFN-gamma is mediated by bacteria via macrophage-derived cytokines IL-1 and IL-12. *J. Immunol.* 154, 5832–5841, 1995.
- Hiromatsu, K., Yoshikai, Y., Matsuzaki, G., Ohga, S., Muramori, K., Matsumoto, K., Bluestone, J. A., and Nomoto, K., A protective role of gamma/delta T cells in primary infection with *Listeria* monocytogenes in mice. J. Exp. Med. 175, 49–56, 1992.
- 7. Mombaerts, P., Arnoldi, J., Russ, F., Tonegawa, S., and Kaufmann, S. H., Different roles of alpha beta and gamma delta T

- cells in immunity against an intracellular bacterial pathogen. Nature~365,~53-56,~1993.
- 8. Rogers, H. W., and Unanue, E. R., Neutrophils are involved in acute, nonspecific resistance to *Listeria monocytogenes* in mice. *Infect. Immun.* **61**, 5090–5096, 1993.
- 9. Czuprynski, C. J., Brown, J. F., Maroushek, N., Wagner, R. D., and Steinberg, H., Administration of antigranulocyte monoclonal antibody RB6-8C5 impairs the resistance of mice to *Listeria monocytogenes* infection. *J. Immunol.* **152**, 1836–1846, 1994.
- Conlan, J. W., and North, R. J., Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J. Exp. Med. 174, 741–744, 1991.
- 11. Czuprynski, C. J., and Brown, J. F., Effects of purified anti-Lyt-2 mAb treatment on murine listeriosis: Comparative roles of Lyt-2⁺ and L3T4⁺ cells in resistance to primary and secondary injection, delayed-type hypersensitivity and adoptive transfer of resistance. *Immunology* 71, 107–112, 1990.
- Mielke, M. E., Ehlers, S., and Hahn, H., T-cell subsets in delayed-type hypersensitivity, protection, and granuloma formation in primary and secondary Listeria infection in mice: Superior role of Lyt-2⁺ cells in acquired immunity. *Infect. Immun.* 56, 1920–1925, 1988.
- Kagi, D., Ledermann, B., Burki, K., Hengartner, H., and Zinkernagel, H., CD8⁺ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. *Eur. J. Immunol.* 24, 3068–3072, 1994.
- 14. White, D. W., and Harty, J. T., Perforin-deficient CD8 $^+$ T cells provide immunity to *Listeria monocytogenes* by a mechanism that is independent of CD95 and IFN- γ but requires TNF- α . *J. Immunol.* **160**, 898–905, 1998.
- Mocci, S., Dalrymple, S. A., Nishinakamura, R., and Murray, R., The cytokine stew and innate resistance to *L. monocytogenes. Immunol. Rev.* 158, 107–114, 1997.
- Tripp, C. S., Wolf, S. F., and Unanue, E. R., Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. *Proc. Natl. Acad. Sci. USA* 90, 3725– 3729, 1993.
- 17. Emoto, M., Emoto, Y., and Kaufmann, S. H. E., Interleukin-4-producing CD4 $^+$ NK1.1 $^+$ TCR α / β ^{intermediate} liver lymphocytes are down-regulated by *Listeria monocytogenes. Eur. J. Immunol.* **25**, 3321–3325, 1995.
- Flesch, I. E. A., Wandersee, A., and Kaufmann, S. H. E., IL-4 secretion by CD4⁺NK1⁺ T cells induces monocyte chemoattractant protein-1 in early Listeriosis. *J. Immunol.* 159, 7–10, 1997.
- Kauffmann, S. H. E., Emoto, M., Szalay, G., Barsig, J., and Flesch, I. E. A., Interleukin-4 and listeriosis. *Immunol. Rev.* 158, 95–105, 1997.
- Emoto, Y., Emoto, M., and Kaufmann, S. H. E., Transient control
 of interleukin-4 producing natural killer T cells in the livers of
 Listeria monocytogenes-infected mice by interleukin-12. Infect.
 Immun. 65, 5003–5009, 1997.
- Haak-Frendscho, M., Brown, J. F., Iizawa, Y., Wagner, R. D., and Czuprynski, C. J., Administration of anti-IL-4 monoclonal antibody 11B11 increases the resistance of mice to *Listeria* monocytogenes infection. J. Immunol. 148, 3978–3985, 1992.
- Schafer, R., Portnoy, D. A., Brassell, S. A., and Paterson, Y., Induction of a cellular immune response to a foreign antigen by a recombinant *Listeria monocytogenes* vaccine. *J. Immunol.* 149, 53–59, 1992.
- 23. Pan, Z.-K., Ikonomidis, G., Lazenby, A., Pardoll, D., and Paterson, Y., A recombinant *Listeria monocytogenes* vaccine express-

- ing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. *Nat. Med.* **1,** 471–477, 1995.
- 24. Pan, Z.-K., Ikonomidis, G., Pardoll, D., and Paterson, Y., Regression of established tumors in mice mediated by the oral administration of a recombinant *Listeria monocytogenes* vaccine. *Cancer Res.* **55**, 4776–4779, 1995.
- Toes, R. E., Ossendorp, F., Offringa, R., and Melief, C. J., CD4⁺ T cells and their role in antitumor immune responses. *J. Exp. Med.* 189, 753–756, 1999.
- Greenberg, P. D., Cheever, M. A., and Fefer, A., Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1⁺2⁻ lymphocytes. *J. Exp. Med.* 154, 952–963, 1981.
- Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D., and Levitsky, H., The central role of CD4⁺ T cells in the antitumor immune response. *J. Exp. Med.* 188, 2357–2368, 1998
- Greenberg, P. D., Therapy of murine leukemia with cyclophosphamide and immune Lyt-2⁺ cells: Cytolytic T cells can mediate eradication of disseminated leukemia. *J. Immunol.* 136, 1917– 1922, 1986.
- Greenberg, P. D., Kern, D. E., and Cheever, M. A., Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1⁺2⁻ T cells. Tumor eradication does not require participation of cytotoxic T cells. *J. Exp. Med.* 161, 1122–1134, 1985
- Ossendorp, F., Mengede, E., Camps, M., Filius, R., and Melief, C. J., Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702, 1998.
- Ikonomidis, G., Paterson, Y., Kos, F. J., and Portnoy, D. A., Delivery of a viral antigen to the class I processing and presentation pathway of *Listeria monocytogenes*. *J. Exp. Med.* 180, 2209–2218, 1994.
- Frankel, F. R., Hegde, S., Lieberman, J., and Paterson, Y., Induction of cell-mediated immune responses to human immunodeficiency virus type 1 Gag protein by using *Listeria monocytogenes* as a live vaccine vector. *J. Immunol.* 155, 4775–4782, 1995.
- Yokoyama, W. M., Monoclonal antibody supernatant and ascites fluid production. *In* "Current Protocols in Immunology" (J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, and R. Coico, Eds.), pp. 2.6.1–2.6.7, Wiley, New York, 1991.
- Corbett, T. H., Griswold, D. P., Jr., Roberts, B. J., Peckham, J. C., and Schabel, F. M., Jr., Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure. *Cancer Res.* 35, 2434–2439, 1975.
- Huang, A. Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., and Levitsky, H., Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. *Science* 264, 961–965, 1994.
- van Rooijen, N., and Sanders, A., Liposome mediated depletion of macrophages: Mechanism of action, preparation of liposomes and applications. *J. Immunol. Methods* 174, 83–93, 1994.
- van Rooijen, N., Sanders, A., and van den Berg, T. K., Apoptosis
 of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. *J. Immunol. Methods* 193,
 93–99, 1996.

- 38. Tepper, R. I., Coffman, R. L., and Leder, P., An eosinophil dependent mechanism for the anti-tumor effect of IL-4. *Science* **257**, 548–551, 1992.
- Young, W. W., Jr., Hakomori, S. I., Durdik, J. M., and Henney, C. L., Identification of ganglio-N-tetraosylceramide as a new cell surface marker for murine natural killer (NK) cells. J. Immunol. 124, 199–201, 1980.
- Slifka, M. K., Pagarigan, R. R., and Whitton, J., NK markers are expressed on a high percentage of virus-specific CD8⁺ and CD4⁺ T cells. *J. Immunol.* 164, 2009–2015, 2000.
- Sokal, R. R., and Rohlf, F. J., "Biometry," 2nd ed., p. 228, Freeman, New York, 1981.
- Nussenzweig, M. C., Steinman, R. M., Witmer, M. D., and Gutchinov, B., A monoclonal antibody specific for mouse dendritic cells. *Proc. Natl. Acad. Sci. USA* 79, 161–165, 1982.
- Crowley, M., Inaba, K., Witmer-Pack, M., and Steinman, R. M., The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. *Cell. Immunol.* 118, 108–125, 1989.
- 44. Pulendran, B., Lingappa, J., Kennedy, M. K., Smith, J., Teepe, M., Rudensky, A., Maliszewski, C. R., and Maraskovsky, E., Developmental pathways of dendritic cells in vivo: Distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. *J. Immunol.* 159, 2222–2231, 1997.
- Seljelid, R., Jozefowski, S., and Sveinbjörnsson, B., Tumor stroma. Anticancer Res. 19, 4809–4822, 1999.
- Mantovani, A., Ming, W. J., Balotta, C., Abdeljalil, B., and Bottazi, B., Origin and regulation of tumor associated macrophages: The role of tumor derived chemotactic factors. *Biochim. Biophys. Acta* 865, 59–67, 1986.
- Arase, H., Arase, N., Nakagawa, K., Good, R. A., and Onoe, K., NK1.1⁺ CD4⁺ CD8⁻ thymocytes with specific lymphokine secretion. *Eur. J. Immunol.* 23, 307–310, 1993.
- 48. Cui, J., Shin, T., Kawano, T., Sato, H., Kondo, E., Toura, I., Kaneko, Y., Koseki, H., Kanno, M., and Taniguchi, M., Requirement for $V\alpha14$ NKT cells in IL-12-mediated rejection of tumors. *Science* **278**, 1623–1626, 1997.
- 49. Nakamura, E., Kubota, H., Sato, M., Sugie, T., Yoshida, O., and Minato, N., Involvement of NK1 $^+$ CD4 $^-$ CD8 $^ \alpha\beta$ T cells and endogenous IL-4 in non-MHC-restricted rejection of embryonal carcinoma in genetically resistant mice. *J. Immunol.* **158**, 5338–5348, 1997.
- 50. Takahashi, M., Ogasawara, K., Takeda, K., Hashimoto, W., Sakihara, H., Kumagai, K., Anzai, R., Satoh, M., and Seki, S., LPS induces NK1.1 $^+$ $\alpha\beta$ T cells with potent cytotoxicity in the liver of mice via production of IL-12 from Kupffer cells. *J. Immunol.* **156**, 2436–2442, 1996.
- 51. Takeda, K., Seki, S., Ogasawara, K., Anzai, R., Hashimoto, W., Sugiura, K., Takahashi, M., Satoh, M., and Kumagai, K., Liver NK1.1 $^+$ CD4 $^+$ $\alpha\beta$ T cells activated by IL-12 as a major effector in inhibition of experimental tumor metastasis. *J. Immunol.* **156**, 3366–3373, 1996.
- Hsieh, C.-S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O'Garra, A., and Murphy, K. M., Development of TH1 CD4⁺ T cells through IL-12 produced by Listeria-induced macrophages. *Science* 260, 547–549, 1993.
- Seder, R. A., Kelsall, B. L., and Jankovic, D., Differential roles for IL-12 in the maintenance of immune responses in infectious versus autoimmune disease. *J. Immunol.* 157, 2745–2748, 1996.
- 54. Inge, T. H., Hoover, S. K., Susskind, B. M., Barrett, S. K., and Bear, H. D., Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor β_1 . *Cancer Res.* **52**, 1386–1392, 1992.

- 55. Ranges, G. E., Figari, I. S., Espevik, T., and Palladino, M. A., Jr., Inhibition of cytotoxic T cell development by transforming growth factor β and reversal by recombinant tumor necrosis factor α . *J. Exp. Med.* **166**, 991–998, 1987.
- 56. Tada, T., Ohzeki, S., Utsomi, K., Takiuchi, H., Muramatsu, M., Li, X.-F., Shimizu, J., Fujiwara, H., and Hamaoka, T., Transforming growth factor-β-induced inhibition of T cell function: Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. *J. Immunol.* 146, 1077–1082, 1991.
- 57. Weiskirch, L. M., Bar-Dagan, Y., and Mokyr, M. B., Transforming growth factor-beta-mediated down-regulation of antitumor cytotoxicity of spleen cells from MOPC-315 tumor-bearing mice engaged in tumor eradication following low-dose melphalan therapy. *Cancer Immunol. Immunother.* 38, 215–224, 1994.
- 58. Hochrein, H., O'Keefe, M., Luft, T., Vandenbeele, S., Grumont,

- R. J., Mrakovsky, E., and Shortman, K., Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. *J. Exp. Med.* **192**, 823–833,
- Schuler, T., Qin, Z., Ibe, S., Noben-Trauth, N., and Blankenstein, T., T helper cell type 1-associated and cytotoxic T lymphocytemediated tumor immunity is impaired in interleukin 4-deficient mice. *J. Exp. Med.* 189, 803–810, 1999.
- Voest, E. E., Kenyon, B. M., O'Reilly, M. S., Truitt, G., D'Amato,
 R. J., and Folkman, J., Inhibition of angiogenesis in vivo by
 interleukin 12. J. Natl. Cancer Inst. 87, 581–586, 1995.
- Coughlin, C. M., Salhany, K. E., Wysocka, M., Aruga, E., Kurzawa, H., Chang, A. E., Hunter, C. A., Fox, J. C., Trinchieri, G., and Lee, W. M. F., Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. *J. Clin. Invest.* 101, 1441–1452, 1998.

Received August 31, 2000; accepted with revision November 13, 2000; published online January 22, 2001